{"title":"Enhanced design of PI controller with lead-lag filter for unstable and integrating plus time delay processes","authors":"Sanjay Kumar, M. Ajmeri","doi":"10.1515/cppm-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract In this work, a proportional–integral (PI) controller with a set point filter is designed using the direct synthesis method for unstable plus time delay process. The Suggested method involves design parameters whose suitable values are recommended based on robust stability and robust performance constraints. The absence of derivative term makes PI controllers less sensitive to noise and, therefore, PI controllers are more preferable than PID in industrial applications. Despite a simple control architecture, the proposed method gives improved or comparable performance to previously presented approaches, which are comparatively complex. Four case studies are considered to evaluate the suitability and superiority of the suggested control technique. Proposed controller may be applied to the integrating plus time delay plants after some elementary transformations in the process model.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this work, a proportional–integral (PI) controller with a set point filter is designed using the direct synthesis method for unstable plus time delay process. The Suggested method involves design parameters whose suitable values are recommended based on robust stability and robust performance constraints. The absence of derivative term makes PI controllers less sensitive to noise and, therefore, PI controllers are more preferable than PID in industrial applications. Despite a simple control architecture, the proposed method gives improved or comparable performance to previously presented approaches, which are comparatively complex. Four case studies are considered to evaluate the suitability and superiority of the suggested control technique. Proposed controller may be applied to the integrating plus time delay plants after some elementary transformations in the process model.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.