Transcriptome Analyses Reveal the Mechanism of Changes in the Sugar Constituents of Jujube Fruits under Saline–Alkali Stress

IF 3.3 2区 农林科学 Q1 AGRONOMY Agronomy-Basel Pub Date : 2023-08-27 DOI:10.3390/agronomy13092243
Yan Wang, Yifeng Feng, Min Yan, Xiaoqiu Pu, Dengyang Lu, Hengzhou Yuan, Cuiyun Wu
{"title":"Transcriptome Analyses Reveal the Mechanism of Changes in the Sugar Constituents of Jujube Fruits under Saline–Alkali Stress","authors":"Yan Wang, Yifeng Feng, Min Yan, Xiaoqiu Pu, Dengyang Lu, Hengzhou Yuan, Cuiyun Wu","doi":"10.3390/agronomy13092243","DOIUrl":null,"url":null,"abstract":"Saline–alkali stress is an important environmental factor affecting the growth and development of plants. Plants affected by saline–alkali stress can mitigate the damage by regulating the content of osmoregulatory substances such as soluble sugars. Elucidating the regulatory mechanism of the changes in sugar fractions in jujube fruits under saline–alkali stress is crucial for the development of the jujube fruit industry in saline areas. In this study, we investigated the effects of saline–alkali stress on the development and sugar contents of jujube fruits by subjecting jujube trees to low- and high-saline–alkali stress treatments. The result showed that low saline–alkali stress increased the content of each sugar component and total sugar, whereas high saline–alkali stress suppressed their contents. In the early developmental stage, the fruit mainly accumulated fructose and glucose, whereas in the late stage, it accumulated mainly sucrose. We screened various genes, namely trehalose 6-phosphate phosphatase gene (LOC107418410), α-amylase gene (LOC107428855), α-glucosidase gene (LOC107418468), sucrose synthase gene (LOC107416188), and β-amylase gene (LOC107430415, LOC107406235), all of which were highly correlated with sucrose content in saline–alkali stress, indicating that the starch and sucrose metabolic pathways of jujube fruit are the key pathways regulating sugar accumulation in response to saline–alkali stress. To summarize, this study provides a system-level perspective on the dynamic transcriptional regulation of jujube fruits under saline–alkali stress. Additionally, the study preliminarily screened key differentially expressed genes that affect sugar accumulation in response to saline–alkali stress, providing a theoretical basis for the scientific regulation of jujube fruit quality.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092243","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Saline–alkali stress is an important environmental factor affecting the growth and development of plants. Plants affected by saline–alkali stress can mitigate the damage by regulating the content of osmoregulatory substances such as soluble sugars. Elucidating the regulatory mechanism of the changes in sugar fractions in jujube fruits under saline–alkali stress is crucial for the development of the jujube fruit industry in saline areas. In this study, we investigated the effects of saline–alkali stress on the development and sugar contents of jujube fruits by subjecting jujube trees to low- and high-saline–alkali stress treatments. The result showed that low saline–alkali stress increased the content of each sugar component and total sugar, whereas high saline–alkali stress suppressed their contents. In the early developmental stage, the fruit mainly accumulated fructose and glucose, whereas in the late stage, it accumulated mainly sucrose. We screened various genes, namely trehalose 6-phosphate phosphatase gene (LOC107418410), α-amylase gene (LOC107428855), α-glucosidase gene (LOC107418468), sucrose synthase gene (LOC107416188), and β-amylase gene (LOC107430415, LOC107406235), all of which were highly correlated with sucrose content in saline–alkali stress, indicating that the starch and sucrose metabolic pathways of jujube fruit are the key pathways regulating sugar accumulation in response to saline–alkali stress. To summarize, this study provides a system-level perspective on the dynamic transcriptional regulation of jujube fruits under saline–alkali stress. Additionally, the study preliminarily screened key differentially expressed genes that affect sugar accumulation in response to saline–alkali stress, providing a theoretical basis for the scientific regulation of jujube fruit quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录组分析揭示盐碱胁迫下大枣果实糖成分变化的机制
盐碱胁迫是影响植物生长发育的重要环境因素。受盐碱胁迫影响的植物可以通过调节渗透调节物质(如可溶性糖)的含量来减轻损害。阐明盐碱胁迫下红枣果实糖组分变化的调控机制,对盐碱地区红枣产业的发展至关重要。在本研究中,我们通过对枣树进行低盐碱和高盐碱胁迫处理,研究了盐碱胁迫对枣树果实发育和含糖量的影响。结果表明,低盐碱胁迫增加了各糖组分和总糖的含量,而高盐碱胁迫抑制了它们的含量。果实发育早期主要积累果糖和葡萄糖,后期主要积累蔗糖。我们筛选了各种基因,即海藻糖6-磷酸磷酸酶基因(LOC107418410)、α-淀粉酶基因(LOC107 428855)、α葡糖苷酶基因(LOC10.7418468)、蔗糖合酶基因(LOCA107416188)和β-淀粉酶基因,所有这些基因都与盐碱胁迫下的蔗糖含量高度相关,表明枣果实的淀粉和蔗糖代谢途径是调节盐碱胁迫下糖积累的关键途径。总之,本研究为盐碱胁迫下红枣果实的动态转录调控提供了一个系统层面的视角。此外,本研究还初步筛选了影响盐碱胁迫下糖积累的关键差异表达基因,为科学调控红枣果实品质提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agronomy-Basel
Agronomy-Basel Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍: Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization Design and Parameter Optimization of a Negative-Pressure Peanut Fruit-Soil Separating Device Tomato Recognition and Localization Method Based on Improved YOLOv5n-seg Model and Binocular Stereo Vision Compost Tea as Organic Fertilizer and Plant Disease Control: Bibliometric Analysis Silver and Hematite Nanoparticles Had a Limited Effect on the Bacterial Community Structure in Soil Cultivated with Phaseolus vulgaris L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1