Prospects for Evaluating the Damageability of Asphalt Concrete Pavements During Cold Recycling

IF 0.6 4区 工程技术 Q4 ENGINEERING, CIVIL Baltic Journal of Road and Bridge Engineering Pub Date : 2020-09-28 DOI:10.7250/BJRBE.2020-15.498
V. Zankavich, B. Khroustalev, Tingguo Liu, U. Veranko, V. Haritonovs, A. Busel, B. Shang, Zhongyu Li
{"title":"Prospects for Evaluating the Damageability of Asphalt Concrete Pavements During Cold Recycling","authors":"V. Zankavich, B. Khroustalev, Tingguo Liu, U. Veranko, V. Haritonovs, A. Busel, B. Shang, Zhongyu Li","doi":"10.7250/BJRBE.2020-15.498","DOIUrl":null,"url":null,"abstract":"The article considers improvement of the methodology for accounting for the degradation of asphalt concrete working in the upper layers of the pavement. Development of recycling technologies for road structures is an ongoing process; it allows reaching a higher quality of reclaimed materials and using them for subsequent construction of structural layers, including the upper layers without the protective ones, as well as during repair and reconstruction of roads of various technical categories. At the same time, the system of pre-project assessment (diagnostics) of the state of asphalt concrete pavements cannot be considered optimal and effective because the determined indicators demonstrate that, firstly, various surface and structural defects are present, and, secondly, that the indicators mentioned above are more relevant to the road structure as a whole. The joint handling of the theoretical and experimental data allows concluding that damageability level depends on the physical, mechanical and structural properties, the main being maximal structural strength and the number of elastic bonds involved in the deformation process. A variant of modelling of asphalt concrete damageability depending on the work capacity is proposed, when the reduced amount of dissipated energy is replaced with sufficient accuracy for practice by the ratio of the actual number of load application cycles (freezing and thawing cycles) to the limit. A correlation between the level of damageability and the kinetics of changes of the interpore space of asphalt concrete under the influence of strain (temperature, climatic factors) has been established. Results allow fixing (predicting) the level of damageability by measuring the level of water permeability. The research methodology and equipment for implementation thereof was developed earlier, it can be effectively used at the stage of pre-project diagnosis.","PeriodicalId":55402,"journal":{"name":"Baltic Journal of Road and Bridge Engineering","volume":"15 1","pages":"125-151"},"PeriodicalIF":0.6000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Road and Bridge Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7250/BJRBE.2020-15.498","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The article considers improvement of the methodology for accounting for the degradation of asphalt concrete working in the upper layers of the pavement. Development of recycling technologies for road structures is an ongoing process; it allows reaching a higher quality of reclaimed materials and using them for subsequent construction of structural layers, including the upper layers without the protective ones, as well as during repair and reconstruction of roads of various technical categories. At the same time, the system of pre-project assessment (diagnostics) of the state of asphalt concrete pavements cannot be considered optimal and effective because the determined indicators demonstrate that, firstly, various surface and structural defects are present, and, secondly, that the indicators mentioned above are more relevant to the road structure as a whole. The joint handling of the theoretical and experimental data allows concluding that damageability level depends on the physical, mechanical and structural properties, the main being maximal structural strength and the number of elastic bonds involved in the deformation process. A variant of modelling of asphalt concrete damageability depending on the work capacity is proposed, when the reduced amount of dissipated energy is replaced with sufficient accuracy for practice by the ratio of the actual number of load application cycles (freezing and thawing cycles) to the limit. A correlation between the level of damageability and the kinetics of changes of the interpore space of asphalt concrete under the influence of strain (temperature, climatic factors) has been established. Results allow fixing (predicting) the level of damageability by measuring the level of water permeability. The research methodology and equipment for implementation thereof was developed earlier, it can be effectively used at the stage of pre-project diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沥青混凝土路面冷回收易损性评价展望
本文考虑改进用于计算路面上层沥青混凝土退化的方法。道路结构的回收技术的发展是一个持续的过程;它可以使再生材料达到更高的质量,并将其用于后续结构层的施工,包括没有保护层的上层,以及各种技术类别的道路的修复和重建。同时,沥青混凝土路面状态的项目前评估(诊断)系统不能被认为是最优和有效的,因为所确定的指标表明,首先,存在各种表面和结构缺陷,其次,上述指标与整个道路结构的相关性更大。理论和实验数据的联合处理可以得出结论,可损伤性水平取决于物理,机械和结构性能,主要是最大结构强度和参与变形过程的弹性键的数量。提出了一种基于工作能力的沥青混凝土易损性模型的变体,当耗散能量的减少量被实际负载应用周期(冻结和融化周期)与极限的比率所取代时,具有足够的准确性。建立了应变(温度、气候等)作用下沥青混凝土孔隙空间变化动力学与损伤程度的相关性。结果允许通过测量水渗透性来确定(预测)损伤程度。研究方法和实施设备较早,可在项目前期诊断阶段有效使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Baltic Journal of Road and Bridge Engineering
Baltic Journal of Road and Bridge Engineering 工程技术-工程:土木
CiteScore
2.10
自引率
9.10%
发文量
25
审稿时长
>12 weeks
期刊介绍: THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING AREAS OF RESEARCH: road and bridge research and design, road construction materials and technologies, bridge construction materials and technologies, road and bridge repair, road and bridge maintenance, traffic safety, road and bridge information technologies, environmental issues, road climatology, low-volume roads, normative documentation, quality management and assurance, road infrastructure and its assessment, asset management, road and bridge construction financing, specialist pre-service and in-service training;
期刊最新文献
Traffic Load Model Calibration and Comparison to Evolving Traffic Loads In 2014–2018 Research of Porous Asphalt Concrete Application on Highway Sections with The Increased Aquaplaning Danger Level An Assessment of The Effect of The Average Speed Enforcement Systems on Lithuanian Roads Screen-Out Stones Activated with Mineral Binders and Used as Material for Earth Construction Influence of Nonlinear Analysis Technology on Damage Analysis of Asphalt Pavement Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1