Ballistic performance of optimised light weight composite armour

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Forces in mechanics Pub Date : 2023-08-01 DOI:10.1016/j.finmec.2023.100216
Amar Prakash, M. Fasil, N. Anandavalli
{"title":"Ballistic performance of optimised light weight composite armour","authors":"Amar Prakash,&nbsp;M. Fasil,&nbsp;N. Anandavalli","doi":"10.1016/j.finmec.2023.100216","DOIUrl":null,"url":null,"abstract":"<div><p>This research paper presents a comprehensive investigation into the response of a 3D finite element model when subjected to 7.62 AP projectiles. The study utilises Hetherington's armour composite equation and incorporates the Johnson-Holmquist material model to analyse the strength and failure criteria of the ceramic and Kevlar/epoxy components, respectively. The results highlight the remarkable resilience of the composite armour, demonstrating its ability to withstand projectile velocities up to 1500 m/s. However, as the ballistic velocity limit increases, the armour experiences significant damage, including projectile erosion and panel delamination. Through numerical simulations and advanced modelling techniques, the paper thoroughly explores the failure modes and energy absorption characteristics of composite armour systems under projectile impact. It investigates key parameters such as velocity, acceleration, kinetic energy, internal energy, pressure distribution, displacement, and damage progression. The analysis reveals a progressive decrease in kinetic energy as the projectile interacts with the armour, underscoring the crucial role of energy absorption in preventing projectile penetration. Moreover, the impact velocity influences the distribution of internal energy within the composite armour, with higher velocities leading to greater energy absorption up to a threshold limit. The study also determines the ballistic limit velocity (V50) using the velocity history approach and validates the findings with existing literature. Overall, the research provides valuable insights into the limitations of composite armour and offers important recommendations for designing and improving materials to achieve superior ballistic protection. It emphasises the significance of reaching the maximum ballistic limit while maintaining a lightweight armour structure by optimising the total armour thickness. This study contributes to the advancement of armour technology and enhances our understanding of the behaviour of composite materials under high-velocity impacts. It offers valuable guidance for the development of more robust armour systems suitable for various defence and protection applications.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This research paper presents a comprehensive investigation into the response of a 3D finite element model when subjected to 7.62 AP projectiles. The study utilises Hetherington's armour composite equation and incorporates the Johnson-Holmquist material model to analyse the strength and failure criteria of the ceramic and Kevlar/epoxy components, respectively. The results highlight the remarkable resilience of the composite armour, demonstrating its ability to withstand projectile velocities up to 1500 m/s. However, as the ballistic velocity limit increases, the armour experiences significant damage, including projectile erosion and panel delamination. Through numerical simulations and advanced modelling techniques, the paper thoroughly explores the failure modes and energy absorption characteristics of composite armour systems under projectile impact. It investigates key parameters such as velocity, acceleration, kinetic energy, internal energy, pressure distribution, displacement, and damage progression. The analysis reveals a progressive decrease in kinetic energy as the projectile interacts with the armour, underscoring the crucial role of energy absorption in preventing projectile penetration. Moreover, the impact velocity influences the distribution of internal energy within the composite armour, with higher velocities leading to greater energy absorption up to a threshold limit. The study also determines the ballistic limit velocity (V50) using the velocity history approach and validates the findings with existing literature. Overall, the research provides valuable insights into the limitations of composite armour and offers important recommendations for designing and improving materials to achieve superior ballistic protection. It emphasises the significance of reaching the maximum ballistic limit while maintaining a lightweight armour structure by optimising the total armour thickness. This study contributes to the advancement of armour technology and enhances our understanding of the behaviour of composite materials under high-velocity impacts. It offers valuable guidance for the development of more robust armour systems suitable for various defence and protection applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化轻型复合装甲的弹道性能
本文对三维有限元模型在7.62 AP弹丸作用下的响应进行了全面的研究。该研究利用了Hetherington的装甲复合方程,并结合了Johnson-Holmquist材料模型,分别分析了陶瓷和凯夫拉尔/环氧树脂组件的强度和失效准则。结果突出了复合装甲的显著弹性,证明其能够承受高达1500米/秒的弹丸速度。然而,随着弹道速度极限的增加,装甲会遭受严重的损伤,包括弹丸侵蚀和装甲板分层。通过数值模拟和先进的建模技术,深入研究了弹丸冲击下复合装甲系统的失效模式和能量吸收特性。它研究了关键参数,如速度、加速度、动能、内能、压力分布、位移和损伤进展。分析表明,随着弹丸与装甲的相互作用,动能逐渐减少,强调了能量吸收在防止弹丸穿深方面的关键作用。此外,冲击速度会影响复合装甲内部能量的分布,冲击速度越快,吸收的能量越大,达到一定的阈值。该研究还利用速度历史方法确定了弹道极限速度(V50),并与现有文献验证了研究结果。总的来说,这项研究对复合装甲的局限性提供了有价值的见解,并为设计和改进材料提供了重要的建议,以实现卓越的弹道防护。它强调了达到最大弹道极限的重要性,同时通过优化总装甲厚度来保持轻型装甲结构。这项研究有助于装甲技术的进步,并增强我们对复合材料在高速撞击下的行为的理解。它为开发更坚固的装甲系统提供了有价值的指导,适用于各种防御和保护应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
期刊最新文献
Enhanced meshfree method with nodal integration for analysis of functionally graded material sandwich curved shells Improved eight-node non-conforming hexahedral element for structures of various shapes A Euler-lagrange Model of dynamic internal friction Static bending analysis of BDFG nanobeams by nonlocal couple stress theory and nonlocal strain gradient theory Response of circular type sandwich panel using JUCO-glass fiber with PU foam under three-point bending loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1