{"title":"Increasing personal data contributions for the greater public good: a field experiment on an online education platform","authors":"Viola Ackfeld, Tobias Rohloff, Sylvi Rzepka","doi":"10.1017/bpp.2021.39","DOIUrl":null,"url":null,"abstract":"\n Personal data increasingly serve as inputs to public goods. Like other types of contributions to public goods, personal data are likely to be underprovided. We investigate whether classical remedies to underprovision are also applicable to personal data and whether the privacy-sensitive nature of personal data must be additionally accounted for. In a randomized field experiment on a public online education platform, we prompt users to complete their profiles with personal information. Compared to a control message, we find that making public benefits salient increases the number of personal data contributions significantly. This effect is even stronger when additionally emphasizing privacy protection, especially for sensitive information. Our results further suggest that emphasis on both public benefits and privacy protection attracts personal data from a more diverse set of contributors.","PeriodicalId":29777,"journal":{"name":"Behavioural Public Policy","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Public Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bpp.2021.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Personal data increasingly serve as inputs to public goods. Like other types of contributions to public goods, personal data are likely to be underprovided. We investigate whether classical remedies to underprovision are also applicable to personal data and whether the privacy-sensitive nature of personal data must be additionally accounted for. In a randomized field experiment on a public online education platform, we prompt users to complete their profiles with personal information. Compared to a control message, we find that making public benefits salient increases the number of personal data contributions significantly. This effect is even stronger when additionally emphasizing privacy protection, especially for sensitive information. Our results further suggest that emphasis on both public benefits and privacy protection attracts personal data from a more diverse set of contributors.