Zeolitic Imidazolate Framework-8-Loaded Hydrogels as a Highly Biocompatible Carrier for Drug Delivery Applications

IF 0.5 Q4 ENGINEERING, BIOMEDICAL Journal of Biomimetics, Biomaterials and Biomedical Engineering Pub Date : 2023-05-31 DOI:10.4028/p-268hc7
Pagasukon Mekrattanachai, Naruemon Setthaya, Chakkresit Chindawong, Bunlawee Yotnoi, W.-G. Song, Natchanon Ratanapun, Supreeda Tambunlertchai, C. Manaspon
{"title":"Zeolitic Imidazolate Framework-8-Loaded Hydrogels as a Highly Biocompatible Carrier for Drug Delivery Applications","authors":"Pagasukon Mekrattanachai, Naruemon Setthaya, Chakkresit Chindawong, Bunlawee Yotnoi, W.-G. Song, Natchanon Ratanapun, Supreeda Tambunlertchai, C. Manaspon","doi":"10.4028/p-268hc7","DOIUrl":null,"url":null,"abstract":"Zeolitic imidazolate frameworks-8 (ZIF-8), a type of metal-organic frameworks (MOFs), displays high porosity, large surface areas, and tunable functionality in nanocomposites, promising carrier for drug delivery applications. In this work, ZIF-8 nanomaterials were synthesized via precipitation under three different conditions and subsequently loaded onto chitosan/pluronic F-127 (CS/PL) hydrogels. The ZIF-8 materials prepared in NH4OH solution (ZIF-8-NH4OH) showed a regular cubic shape with a large particle size of approximately 963 nm due to the acceleration of crystal growth in a basic medium. Meanwhile, the ZIF-8 species prepared in H2O and MeOH (ZIF-8-H2O and ZIF-8-MeOH, respectively) displayed crystal sizes of approximately 152 and 240 nm, respectively. The overall toxicity of the ZIF-8 nanomaterials was determined with an XTT assay against the L929 mouse fibroblast cell line. The morphology of the cells was altered at a concentration of over 30 µg/mL due to cell membrane deformations. This result correlated with the lactate dehydrogenase (LDH) release study by detection of LDH release at a concentration of over 25 µg/mL (50% LDH release). To reduce the toxicity of the ZIF-8 materials, CS/PL hydrogels were appropriately prepared and used to encapsulate the ZIF-8 at 0.095% w/w. Cytotoxicity results of the ZIF-8-loaded CS/PL hydrogels indicated over 75% cell viability of the L929 cells. These results presented significant implications for future applications of the ZIF-8 particles in the delivery of drugs or other compounds.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":"60 1","pages":"29 - 42"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-268hc7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Zeolitic imidazolate frameworks-8 (ZIF-8), a type of metal-organic frameworks (MOFs), displays high porosity, large surface areas, and tunable functionality in nanocomposites, promising carrier for drug delivery applications. In this work, ZIF-8 nanomaterials were synthesized via precipitation under three different conditions and subsequently loaded onto chitosan/pluronic F-127 (CS/PL) hydrogels. The ZIF-8 materials prepared in NH4OH solution (ZIF-8-NH4OH) showed a regular cubic shape with a large particle size of approximately 963 nm due to the acceleration of crystal growth in a basic medium. Meanwhile, the ZIF-8 species prepared in H2O and MeOH (ZIF-8-H2O and ZIF-8-MeOH, respectively) displayed crystal sizes of approximately 152 and 240 nm, respectively. The overall toxicity of the ZIF-8 nanomaterials was determined with an XTT assay against the L929 mouse fibroblast cell line. The morphology of the cells was altered at a concentration of over 30 µg/mL due to cell membrane deformations. This result correlated with the lactate dehydrogenase (LDH) release study by detection of LDH release at a concentration of over 25 µg/mL (50% LDH release). To reduce the toxicity of the ZIF-8 materials, CS/PL hydrogels were appropriately prepared and used to encapsulate the ZIF-8 at 0.095% w/w. Cytotoxicity results of the ZIF-8-loaded CS/PL hydrogels indicated over 75% cell viability of the L929 cells. These results presented significant implications for future applications of the ZIF-8 particles in the delivery of drugs or other compounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沸石咪唑骨架-8-负载水凝胶作为药物递送应用的高度生物相容性载体
沸石-咪唑盐骨架-8(ZIF-8)是一种金属-有机骨架(MOFs),在纳米复合材料中表现出高孔隙率、大表面积和可调功能,是药物递送应用的有前途的载体。在本工作中,通过在三种不同条件下沉淀合成了ZIF-8纳米材料,并随后将其负载到壳聚糖/pulronic F-127(CS/PL)水凝胶上。在NH4OH溶液(ZIF-8-NH4OH)中制备的ZIF-8材料由于在碱性介质中加速晶体生长而显示出具有约963nm的大颗粒尺寸的规则立方体形状。同时,在H2O和MeOH中制备的ZIF-8物质(分别为ZIF-8-H2O和ZIF-8-MeOH)分别显示出约152和240nm的晶体尺寸。ZIF-8纳米材料对L929小鼠成纤维细胞系的总体毒性通过XTT测定法测定。在浓度超过30µg/mL时,由于细胞膜变形,细胞的形态发生了改变。该结果与乳酸脱氢酶(LDH)释放研究相关,通过检测浓度超过25µg/mL的LDH释放(50%LDH释放)。为了降低ZIF-8材料的毒性,适当地制备了CS/PL水凝胶,并将其用于以0.095%w/w封装ZIF-8。ZIF-8负载的CS/PL水凝胶的细胞毒性结果表明L929细胞的细胞活力超过75%。这些结果对ZIF-8颗粒在药物或其他化合物递送中的未来应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
期刊最新文献
Multiple Channels Model Based on Mel Spectrogram for Classifying Abnormalities in Lung Sound Effect of Plant Oil Derived Bio-Resin and Curing Temperature on Static and Dynamic Mechanical Properties of Epoxy Network Active Rehabilitation Gloves Based on Brain-Computer Interfaces and Deep Learning <i>In Vitro</i> Study: Bioactivity, Biocompatibility and Antibacterial Behavior for Polyetheretherketone Composites Synthesis of Colloidal Silver Nanoparticles Using Alginate as Reducing and Stabilizing Agents and its Application as Antibacterial Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1