On the Comparison of Deep Learning Neural Network and Binary Logistic Regression for Classifying the Acceptance Status of Bidikmisi Scholarship Applicants in East Java

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2018-12-31 DOI:10.11113/MATEMATIKA.V34.N3.1141
N. Cahyani, K. Fithriasari, Irhamah Irhamah, Nur Iriawan
{"title":"On the Comparison of Deep Learning Neural Network and Binary Logistic Regression for Classifying the Acceptance Status of Bidikmisi Scholarship Applicants in East Java","authors":"N. Cahyani, K. Fithriasari, Irhamah Irhamah, Nur Iriawan","doi":"10.11113/MATEMATIKA.V34.N3.1141","DOIUrl":null,"url":null,"abstract":"Neural Network and Binary Logistic Regression are modern and classical data mining analysis tools that can be used to classify data on Bidikmisi scholarship acceptance in East Java Province, Indonesia. One form of Neural Network model available for various applications is the Resilient Backpropagation Neural Network (Resilient BPNN). This study aims to compare the performance of the Resilient BPNN method as a Deep Learning Neural Network and Binary Logistic Regression method in determining the classification of Bidikmisi scholarship acceptance in East Java Province. After preprocessing data and dividing them into two parts, i.e. sets of testing and training data, with 10-foldcross-validation procedure, the Resilient BPNN and Binary Logistic Regression methods are implemented. The result shows that Resilient BPNN with two hidden layers is the best platformnetwork model. The classificationG-mean resulted by these both methods is that Resilient BPNN with two hidden layers is more representative with better performance than Binary Logistic Regression. The Resilient BPNN is recommended to be used topredict acceptance of Bidikmisi applicants yearly.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N3.1141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Neural Network and Binary Logistic Regression are modern and classical data mining analysis tools that can be used to classify data on Bidikmisi scholarship acceptance in East Java Province, Indonesia. One form of Neural Network model available for various applications is the Resilient Backpropagation Neural Network (Resilient BPNN). This study aims to compare the performance of the Resilient BPNN method as a Deep Learning Neural Network and Binary Logistic Regression method in determining the classification of Bidikmisi scholarship acceptance in East Java Province. After preprocessing data and dividing them into two parts, i.e. sets of testing and training data, with 10-foldcross-validation procedure, the Resilient BPNN and Binary Logistic Regression methods are implemented. The result shows that Resilient BPNN with two hidden layers is the best platformnetwork model. The classificationG-mean resulted by these both methods is that Resilient BPNN with two hidden layers is more representative with better performance than Binary Logistic Regression. The Resilient BPNN is recommended to be used topredict acceptance of Bidikmisi applicants yearly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习神经网络与二元逻辑回归在东爪哇Bidikmisi奖学金申请者录取状况分类中的比较
神经网络和二元逻辑回归是现代和经典的数据挖掘分析工具,可用于分类印度尼西亚东爪哇省Bidikmisi奖学金录取数据。可用于各种应用的神经网络模型的一种形式是弹性反向传播神经网络(Resilient BPNN)。本研究旨在比较弹性BPNN方法作为深度学习神经网络和二元逻辑回归方法在确定东爪哇省Bidikmisi奖学金接受分类方面的性能。在对数据进行预处理并将其分为测试数据集和训练数据集两部分,经过10倍交叉验证后,实现了弹性BPNN和二元逻辑回归方法。结果表明,两隐层弹性bp神经网络是最好的平台网络模型。两种方法的分类均值表明,具有两隐层的弹性BPNN比二元逻辑回归更具代表性,性能更好。弹性BPNN被推荐用于预测每年Bidikmisi申请人的接受情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1