Formulation, Optimization and Characterization of Bupropion Hydrochloride Loaded Nanostructured Lipid Carriers for Intra-Nasal Administration: An Approach for Management of Smoking Cessation

N. Jawahar, S. Aravind, Bala Sai Soujith Nidamanuri, Praharsh Kumar M R, S. V, J. Selvaraj
{"title":"Formulation, Optimization and Characterization of Bupropion Hydrochloride Loaded Nanostructured Lipid Carriers for Intra-Nasal Administration: An Approach for Management of Smoking Cessation","authors":"N. Jawahar, S. Aravind, Bala Sai Soujith Nidamanuri, Praharsh Kumar M R, S. V, J. Selvaraj","doi":"10.2174/2468187313666221020143555","DOIUrl":null,"url":null,"abstract":"\n\nTobacco smoking is a major factor leading to cardiovascular diseases. About 48% of cardiovascular diseases occur due to cigarette smoking. Bupropion Hydrochloride is non-nicotine treatment for smoking cessation. The existing marketed formulation of bupropion have limitations like low bioavailability and extensive first-pass metabolism. In order to boost the bioavailability and increase the brain biodistribution of the drug, a colloidal drug delivery system like nanostructured lipid carriers is employed.\n\n\n\nNLC formulation was prepared using microemulsion technique and optimized formula was developed using three-level factorial design.\n\n\n\nThe particle size of the optimized formulation was 162 nm, Polydispersity index was 12.2% and zeta potential was -29.0mV. Entrapment efficiency was found to be 41.2%. SEM images show that these NLCs are spherical. In-vitro drug release study was conducted and at the end of 72 hours, 50 % of drug was released, indicates the sustained release of drug. Histopathological studies were conducted using goat nasal mucosa and results indicates that NLC formulation is non-toxic for intranasal administration.\n\n\n\nThus, through intra-nasal route an increased concentration of drug can be delivered to the brain via olfactory pathway and improve the therapeutic effect and better patient compliance in smoking cessation.\n","PeriodicalId":10818,"journal":{"name":"Current Nanomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2468187313666221020143555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Tobacco smoking is a major factor leading to cardiovascular diseases. About 48% of cardiovascular diseases occur due to cigarette smoking. Bupropion Hydrochloride is non-nicotine treatment for smoking cessation. The existing marketed formulation of bupropion have limitations like low bioavailability and extensive first-pass metabolism. In order to boost the bioavailability and increase the brain biodistribution of the drug, a colloidal drug delivery system like nanostructured lipid carriers is employed. NLC formulation was prepared using microemulsion technique and optimized formula was developed using three-level factorial design. The particle size of the optimized formulation was 162 nm, Polydispersity index was 12.2% and zeta potential was -29.0mV. Entrapment efficiency was found to be 41.2%. SEM images show that these NLCs are spherical. In-vitro drug release study was conducted and at the end of 72 hours, 50 % of drug was released, indicates the sustained release of drug. Histopathological studies were conducted using goat nasal mucosa and results indicates that NLC formulation is non-toxic for intranasal administration. Thus, through intra-nasal route an increased concentration of drug can be delivered to the brain via olfactory pathway and improve the therapeutic effect and better patient compliance in smoking cessation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鼻内给药盐酸安非他酮纳米脂质载体的配方、优化和表征:一种戒烟管理方法
吸烟是导致心血管疾病的一个主要因素。大约48%的心血管疾病是由吸烟引起的。盐酸安非他酮是戒烟的非尼古丁治疗方法。现有上市的安非他酮制剂存在生物利用度低、首过代谢广泛等局限性。为了提高药物的生物利用度,增加药物的脑生物分布,采用纳米结构脂质载体等胶体给药系统。采用微乳液法制备NLC配方,并采用三水平析因设计优化配方。优化后的配方粒径为162 nm,多分散性指数为12.2%,zeta电位为-29.0mV。捕集效率为41.2%。扫描电镜显示这些NLCs呈球形。体外释药研究,72小时后,50%的药物被释放,表明药物缓释。用山羊鼻黏膜进行了组织病理学研究,结果表明NLC配方对鼻内给药无毒。因此,通过鼻内途径,增加的药物浓度可以通过嗅觉途径传递到大脑,提高治疗效果,提高患者的戒烟依从性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Nanomedicine
Current Nanomedicine Medicine-Medicine (miscellaneous)
CiteScore
2.00
自引率
0.00%
发文量
15
期刊最新文献
Contemporary Nanoemulsion Research: Extensive Examination of Self-Nanoemulsifying Drug Delivery Systems Nanomedicine in Alzheimer’s Therapy: Enhancing Drug Delivery Strategies Nanosuspension as a Novel Nanovehicle for Drug Delivery: A Recent Update on Patents and Therapeutic Applications Nanotechnological Carriers in the Treatment of Cancer: A Review Nanocrystals in Drug Delivery: A Cutting-Edge Approach for Enhanced Therapeutic Values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1