{"title":"Rapid development methodology of agricultural robot navigation system working in GNSS-denied environment","authors":"Run-Mao Zhao, Zheng Zhu, Jian-Neng Chen, Tao-Jie Yu, Jun-Jie Ma, Guo-Shuai Fan, Min Wu, Pei-Chen Huang","doi":"10.1007/s40436-023-00438-0","DOIUrl":null,"url":null,"abstract":"<div><p>Robotic autonomous operating systems in global n40avigation satellite system (GNSS)-denied agricultural environments (green houses, feeding farms, and under canopy) have recently become a research hotspot. 3D light detection and ranging (LiDAR) locates the robot depending on environment and has become a popular perception sensor to navigate agricultural robots. A rapid development methodology of a 3D LiDAR-based navigation system for agricultural robots is proposed in this study, which includes: (i) individual plant clustering and its location estimation method (improved Euclidean clustering algorithm); (ii) robot path planning and tracking control method (Lyapunov direct method); (iii) construction of a robot-LiDAR-plant unified virtual simulation environment (combination use of Gazebo and SolidWorks); and (vi) evaluating the accuracy of the navigation system (triple evaluation: virtual simulation test, physical simulation test, and field test). Applying the proposed methodology, a navigation system for a grape field operation robot has been developed. The virtual simulation test, physical simulation test with GNSS as ground truth, and field test with path tracer showed that the robot could travel along the planned path quickly and smoothly. The maximum and mean absolute errors of path tracking are 2.72 cm, 1.02 cm; 3.12 cm, 1.31 cm, respectively, which meet the accuracy requirements of field operations, establishing the effectiveness of the proposed methodology. The proposed methodology has good scalability and can be implemented in a wide variety of field robot, which is promising to shorten the development cycle of agricultural robot navigation system working in GNSS-denied environment.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 4","pages":"601 - 617"},"PeriodicalIF":4.2000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40436-023-00438-0.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-023-00438-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
Robotic autonomous operating systems in global n40avigation satellite system (GNSS)-denied agricultural environments (green houses, feeding farms, and under canopy) have recently become a research hotspot. 3D light detection and ranging (LiDAR) locates the robot depending on environment and has become a popular perception sensor to navigate agricultural robots. A rapid development methodology of a 3D LiDAR-based navigation system for agricultural robots is proposed in this study, which includes: (i) individual plant clustering and its location estimation method (improved Euclidean clustering algorithm); (ii) robot path planning and tracking control method (Lyapunov direct method); (iii) construction of a robot-LiDAR-plant unified virtual simulation environment (combination use of Gazebo and SolidWorks); and (vi) evaluating the accuracy of the navigation system (triple evaluation: virtual simulation test, physical simulation test, and field test). Applying the proposed methodology, a navigation system for a grape field operation robot has been developed. The virtual simulation test, physical simulation test with GNSS as ground truth, and field test with path tracer showed that the robot could travel along the planned path quickly and smoothly. The maximum and mean absolute errors of path tracking are 2.72 cm, 1.02 cm; 3.12 cm, 1.31 cm, respectively, which meet the accuracy requirements of field operations, establishing the effectiveness of the proposed methodology. The proposed methodology has good scalability and can be implemented in a wide variety of field robot, which is promising to shorten the development cycle of agricultural robot navigation system working in GNSS-denied environment.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.