Response of the winter soil moisture of different vegetation types to rainfall events in karst slope land

IF 2.7 4区 环境科学与生态学 Q2 Environmental Science Hydrology Research Pub Date : 2022-09-29 DOI:10.2166/nh.2022.033
E. Yuan, Qiuwen Zhou, W. Yan, D. Peng, Yalin Wang
{"title":"Response of the winter soil moisture of different vegetation types to rainfall events in karst slope land","authors":"E. Yuan, Qiuwen Zhou, W. Yan, D. Peng, Yalin Wang","doi":"10.2166/nh.2022.033","DOIUrl":null,"url":null,"abstract":"\n Understanding the response of soil moisture of different vegetation types to rainfall in karst regions in winter is significant for implementing various ecological restoration projects. However, at present, the related research is mainly focused on non-winter seasons, and only few research exist on winter seasons. Therefore, in this study, four types of vegetation – grassland, arable land, shrubland, and forestland – were selected as sample plots in the Guanling County of southwestern Guizhou, China. The magnitude, time, and speed responses of soil moisture of the vegetation types to rainfall were calculated using the time-series data of soil moisture of different vegetation types. The results showed that the response of soil moisture differed between different vegetation types in winter and non-winter seasons in karst areas. Among the four vegetation types, soil moisture response magnitude to rainfall in grassland and arable land had a similar distribution pattern along different soil depths, whereas, in scrubland and forestland, it decreased gradually along the soil depth. In addition, compared with other vegetation types, for grassland soil moisture, the response magnitude, response duration, and response speed to rainfall are the largest, longest, and fastest, respectively. Our study used quantitative indices to illustrate the response of soil moisture to rainfall for different vegetation types under a humid climate in a mid-subtropical zone on sloped, pure limestone land. The results of this study provide a scientific basis for the implementation of ecological restoration projects in karst areas.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2022.033","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

Understanding the response of soil moisture of different vegetation types to rainfall in karst regions in winter is significant for implementing various ecological restoration projects. However, at present, the related research is mainly focused on non-winter seasons, and only few research exist on winter seasons. Therefore, in this study, four types of vegetation – grassland, arable land, shrubland, and forestland – were selected as sample plots in the Guanling County of southwestern Guizhou, China. The magnitude, time, and speed responses of soil moisture of the vegetation types to rainfall were calculated using the time-series data of soil moisture of different vegetation types. The results showed that the response of soil moisture differed between different vegetation types in winter and non-winter seasons in karst areas. Among the four vegetation types, soil moisture response magnitude to rainfall in grassland and arable land had a similar distribution pattern along different soil depths, whereas, in scrubland and forestland, it decreased gradually along the soil depth. In addition, compared with other vegetation types, for grassland soil moisture, the response magnitude, response duration, and response speed to rainfall are the largest, longest, and fastest, respectively. Our study used quantitative indices to illustrate the response of soil moisture to rainfall for different vegetation types under a humid climate in a mid-subtropical zone on sloped, pure limestone land. The results of this study provide a scientific basis for the implementation of ecological restoration projects in karst areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喀斯特坡地不同植被类型冬季土壤水分对降雨事件的响应
了解喀斯特地区不同植被类型冬季土壤水分对降雨的响应,对实施各种生态修复工程具有重要意义。但目前相关研究主要集中在非冬季,对冬季的研究较少。因此,本研究在贵州西南部关陵县选取草地、耕地、灌丛和林地4种植被类型作为样地。利用不同植被类型土壤水分时间序列数据,计算不同植被类型土壤水分对降雨的响应幅度、响应时间和响应速度。结果表明,喀斯特地区不同植被类型在冬季和非冬季对土壤水分的响应存在差异。在4种植被类型中,草地和耕地土壤水分对降雨的响应强度沿不同土壤深度的分布格局相似,而灌丛和林地土壤水分对降雨的响应强度沿土壤深度逐渐减小。此外,与其他植被类型相比,草地土壤水分对降雨的响应幅度最大,响应持续时间最长,响应速度最快。本研究利用定量指标分析了中亚热带湿润气候下不同植被类型土壤水分对降雨的响应。研究结果为喀斯特地区生态修复工程的实施提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology Research
Hydrology Research Environmental Science-Water Science and Technology
CiteScore
5.30
自引率
7.40%
发文量
70
审稿时长
17 weeks
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Prediction of flash flood peak discharge in hilly areas with ungauged basins based on machine learning Effects of tributary inflows on unsteady flow hysteresis and hydrodynamics in the mainstream Drought mitigation operation of water conservancy projects under severe droughts Water quality level estimation using IoT sensors and probabilistic machine learning model Design storm parameterisation for urban drainage studies derived from regional rainfall datasets: A case study in the Spanish Mediterranean region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1