{"title":"Mitigation of Scour Failure Risk of a River Bridge Located in an Ungauged Basin","authors":"Hüseyin Akay","doi":"10.7250/BJRBE.2021-16.514","DOIUrl":null,"url":null,"abstract":"In this study, scour failure risk of the Catalzeytin Bridge located in the Western Black Sea Basin, Turkey, was assessed for possible future flood events and appropriate scour countermeasures were considered based on economic and constructability considerations. Waterway adequacy in the spans of the bridge and scour criticality around bridge foundations considered for risk calculations in HYRISK were estimated by hydrological and hydraulic analyses of the watershed and stream. Since the watershed of the bridge is ungauged, geomorphological instantaneous unit hydrograph concept was adopted to estimate the peak discharges with various return periods to be used in hydraulic modelling. Monte Carlo simulation results indicated that most of the simulated peak discharges were in the 95% confidence interval. Hydraulic model results from HECRAS indicated that waterway adequacy and scour criticality were critical for discharges with 200 and 500-year return periods. Scour failure risk of the Catalzeytin Bridge was classified as high and it was proposed to reduce the risk by constructing partially grouted riprap as the most feasible alternative that would consequently increase the expected lifespan of the bridge. Following this methodology, river bridges may be prioritized based on the risk analysis.","PeriodicalId":55402,"journal":{"name":"Baltic Journal of Road and Bridge Engineering","volume":"16 1","pages":"37-56"},"PeriodicalIF":0.6000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Road and Bridge Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7250/BJRBE.2021-16.514","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3
Abstract
In this study, scour failure risk of the Catalzeytin Bridge located in the Western Black Sea Basin, Turkey, was assessed for possible future flood events and appropriate scour countermeasures were considered based on economic and constructability considerations. Waterway adequacy in the spans of the bridge and scour criticality around bridge foundations considered for risk calculations in HYRISK were estimated by hydrological and hydraulic analyses of the watershed and stream. Since the watershed of the bridge is ungauged, geomorphological instantaneous unit hydrograph concept was adopted to estimate the peak discharges with various return periods to be used in hydraulic modelling. Monte Carlo simulation results indicated that most of the simulated peak discharges were in the 95% confidence interval. Hydraulic model results from HECRAS indicated that waterway adequacy and scour criticality were critical for discharges with 200 and 500-year return periods. Scour failure risk of the Catalzeytin Bridge was classified as high and it was proposed to reduce the risk by constructing partially grouted riprap as the most feasible alternative that would consequently increase the expected lifespan of the bridge. Following this methodology, river bridges may be prioritized based on the risk analysis.
期刊介绍:
THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING AREAS OF RESEARCH:
road and bridge research and design,
road construction materials and technologies,
bridge construction materials and technologies,
road and bridge repair,
road and bridge maintenance,
traffic safety,
road and bridge information technologies,
environmental issues,
road climatology,
low-volume roads,
normative documentation,
quality management and assurance,
road infrastructure and its assessment,
asset management,
road and bridge construction financing,
specialist pre-service and in-service training;