{"title":"Highly efficient and stable Ra2LaNbO6 double perovskite for energy conversion device applications","authors":"Jitendra Kumar Bairwa , Peeyush Kumar Kamlesh , Upasana Rani , Rashmi Singh , Rajeev Gupta , Sarita Kumari , Tanuj Kumar , Ajay Singh Verma","doi":"10.1016/j.mset.2023.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>Using first-principles calculations, in this piece of work, authors have investigated the physical properties of Ra<sub>2</sub>LaNbO<sub>6</sub> double perovskite by employing the linearized augmented plane wave (LAPW) method. Structural and electronic properties are determined by using LDA, GGA (WC and PBE), LDA + mBJ, and GGA + mBJ potentials. We have found that Ra<sub>2</sub>LaNbO<sub>6</sub> is an indirect band gap (E<sub>g</sub> = 2.4 eV) semiconductor. Its elastic and thermodynamic parameters demonstrate its stability. Its optical study indicates that this material opens the door to its applications in optical devices such as photodetectors, solar cells, superlenses, optical fibers, filters, electromagnetic shielding devices, photovoltaic devices, etc. This material is very good for its practical implementation in thermoelectric devices as both <em>p-</em> and <em>n-</em>type material and extends the interest of experimentalists for further investigations. Thus, Ra<sub>2</sub>LaNbO<sub>6</sub> is found thermodynamically stable and identified as a potential candidate for photovoltaic and thermoelectric devices.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 61-72"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3
Abstract
Using first-principles calculations, in this piece of work, authors have investigated the physical properties of Ra2LaNbO6 double perovskite by employing the linearized augmented plane wave (LAPW) method. Structural and electronic properties are determined by using LDA, GGA (WC and PBE), LDA + mBJ, and GGA + mBJ potentials. We have found that Ra2LaNbO6 is an indirect band gap (Eg = 2.4 eV) semiconductor. Its elastic and thermodynamic parameters demonstrate its stability. Its optical study indicates that this material opens the door to its applications in optical devices such as photodetectors, solar cells, superlenses, optical fibers, filters, electromagnetic shielding devices, photovoltaic devices, etc. This material is very good for its practical implementation in thermoelectric devices as both p- and n-type material and extends the interest of experimentalists for further investigations. Thus, Ra2LaNbO6 is found thermodynamically stable and identified as a potential candidate for photovoltaic and thermoelectric devices.