Daily Variation on Soil Moisture and Temperature on Three Restinga Plant Formations

IF 3.5 Q2 ENVIRONMENTAL SCIENCES Air Soil and Water Research Pub Date : 2023-01-01 DOI:10.1177/11786221231154105
A. Gripp, J. G. F. Genovez, Quézia Souza Santos, Luís Eduardo Guerra Domingos Nogueira, C. A. Barboza, F. Esteves, R. Martins
{"title":"Daily Variation on Soil Moisture and Temperature on Three Restinga Plant Formations","authors":"A. Gripp, J. G. F. Genovez, Quézia Souza Santos, Luís Eduardo Guerra Domingos Nogueira, C. A. Barboza, F. Esteves, R. Martins","doi":"10.1177/11786221231154105","DOIUrl":null,"url":null,"abstract":"Restinga forests and open scrubby formations establish on sandy well-drained soils alongside the Brazilian coastline. Restinga plants are exposed to extreme conditions and vegetation types are mainly structured by species access to groundwater. But to date, no systematic evaluations have been done in order to characterize soil microclimatic conditions and understand how they are associated with variations in climatic drivers. We evaluated hourly soil moisture and temperature along 84 days at Restinga Seasonal Dry Forest (SDF), sparse (Open Clusia Scrubs—OCS), and dense (Open Ericacea Scrubs—OES) tickets at Restinga de Jurubatiba National Park, at Rio de Janeiro state (Brazil). Due to distinctions on physical structure and access to groundwater between plant formations, we expected higher daily soil moisture and lower daily moisture and temperature variations on forests than on open vegetated areas. Daily soil moisture was higher, respectively, on SDF, OES, and OCS, whereas soil moisture and temperature variability presented the opposite trend (SDF < OES < OCS), supporting our hypotheses. Daily soil temperature dynamics are quite well predicted by solar radiation incidence patterns, whereas daily soil moisture is mainly regulated by precipitation at OCS, an interaction of precipitation and temperature at OES and delayed effects of precipitation at SDF. Our results corroborate our expectations that forests are more effective in buffering both air temperature and precipitation effects on soil conditions than open vegetated areas. They also indicate that soil moisture and temperature conditions are important aspects differentiating Restinga vegetation types.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221231154105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Restinga forests and open scrubby formations establish on sandy well-drained soils alongside the Brazilian coastline. Restinga plants are exposed to extreme conditions and vegetation types are mainly structured by species access to groundwater. But to date, no systematic evaluations have been done in order to characterize soil microclimatic conditions and understand how they are associated with variations in climatic drivers. We evaluated hourly soil moisture and temperature along 84 days at Restinga Seasonal Dry Forest (SDF), sparse (Open Clusia Scrubs—OCS), and dense (Open Ericacea Scrubs—OES) tickets at Restinga de Jurubatiba National Park, at Rio de Janeiro state (Brazil). Due to distinctions on physical structure and access to groundwater between plant formations, we expected higher daily soil moisture and lower daily moisture and temperature variations on forests than on open vegetated areas. Daily soil moisture was higher, respectively, on SDF, OES, and OCS, whereas soil moisture and temperature variability presented the opposite trend (SDF < OES < OCS), supporting our hypotheses. Daily soil temperature dynamics are quite well predicted by solar radiation incidence patterns, whereas daily soil moisture is mainly regulated by precipitation at OCS, an interaction of precipitation and temperature at OES and delayed effects of precipitation at SDF. Our results corroborate our expectations that forests are more effective in buffering both air temperature and precipitation effects on soil conditions than open vegetated areas. They also indicate that soil moisture and temperature conditions are important aspects differentiating Restinga vegetation types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三种Restinga植物群落土壤水分和温度的日变化
Restinga森林和开阔的灌木丛形成在巴西海岸线排水良好的沙质土壤上。Restinga植物暴露在极端条件下,植被类型主要由物种对地下水的获取构成。但到目前为止,还没有进行系统的评估来描述土壤小气候条件,并了解它们与气候驱动因素的变化之间的关系。我们评估了84号公路沿线每小时的土壤湿度和温度 Restinga季节性干燥森林(SDF)的天数,里约热内卢州Restinga de Jurubatiba国家公园(巴西)的稀疏(Open Clusia Scrubs-OCS)和密集(Open Ericacea Scrubs/OES)门票。由于不同植物构造在物理结构和地下水获取方面的差异,我们预计森林的日土壤湿度比开放植被区更高,日湿度和温度变化更低。SDF、OES和OCS的日土壤湿度分别较高,而土壤湿度和温度变化趋势相反(SDF < OES < OCS),支持我们的假设。太阳辐射入射模式可以很好地预测日土壤温度动态,而日土壤湿度主要由OCS的降水量、OES的降水量和温度的相互作用以及SDF的降水延迟效应来调节。我们的研究结果证实了我们的预期,即森林在缓冲气温和降水对土壤条件的影响方面比开放植被地区更有效。它们还表明,土壤湿度和温度条件是区分Restinga植被类型的重要方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Air Soil and Water Research
Air Soil and Water Research ENVIRONMENTAL SCIENCES-
CiteScore
7.80
自引率
5.30%
发文量
27
审稿时长
8 weeks
期刊介绍: Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.
期刊最新文献
Evapotranspiration and Crop Coefficient of Sorghum (Sorghum bicolor L.) at Melkassa Farmland, Semi-Arid Area of Ethiopia Heavy Metal Migration in Soil-Plant System in Conditions of Urban Environmental Pollution Daily Variation on Soil Moisture and Temperature on Three Restinga Plant Formations Hydrological Components and Sediment Yield Response to Land Use Land Cover Change in The Ajora-Woybo Watershed of Omo-Gibe Basin, Ethiopia Modeling the Rainfall Exploitation of the Reservoirs in Malaga Province, Spain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1