Pub Date : 2023-01-01DOI: 10.1177/11786221231185104
Julián Molina, J. A. Sillero-Medina, J. D. Ruiz-Sinoga
In areas with scarce water resources, it is so important to analyze the connection between the different elements of a river basin and the water collected by the basin’s reservoir, to determine and predict the spatial and temporal variability of water on it. In this paper, we use the basic principles of hydrological modelling to develop a model for the exploitation of rainfall in reservoir basins in the province of Malaga, Spain. The monthly water input data of the seven reservoirs in the province of Malaga, provided by the Hidrosur Network of the Automatic Hydrological Information System (SAIH), as well as the precipitation and daily temperature of the stations of the State Meteorological Agency (AEMET) associated with the basins of each of these reservoirs were used. We assume that the entrance to a reservoir in a given month must depend on the precipitation produced in its watershed (both the amount of rain and the intensity with which it fell), the precipitation collected from the previous months (and the way in which it was produced) and the evapotranspiration produced during that period. For each reservoir, we propose a model with nine parameters to simulate the arrival of rainfall to the reservoir, covering aspects from the amount and intensity of rain, past and present, to the level of evapotranspiration on a given area for a given date. These nine parameters are optimally adjusted through an artificial intelligence algorithm to maximize the correlation between real and simulated contributions. The results show how this model, adjusted for each reservoir, will let us predict how changes in the rainfall and temperature patterns, predicted, for example, by the IPCC models, will affect the future water levels at the studied reservoirs.
{"title":"Modeling the Rainfall Exploitation of the Reservoirs in Malaga Province, Spain","authors":"Julián Molina, J. A. Sillero-Medina, J. D. Ruiz-Sinoga","doi":"10.1177/11786221231185104","DOIUrl":"https://doi.org/10.1177/11786221231185104","url":null,"abstract":"In areas with scarce water resources, it is so important to analyze the connection between the different elements of a river basin and the water collected by the basin’s reservoir, to determine and predict the spatial and temporal variability of water on it. In this paper, we use the basic principles of hydrological modelling to develop a model for the exploitation of rainfall in reservoir basins in the province of Malaga, Spain. The monthly water input data of the seven reservoirs in the province of Malaga, provided by the Hidrosur Network of the Automatic Hydrological Information System (SAIH), as well as the precipitation and daily temperature of the stations of the State Meteorological Agency (AEMET) associated with the basins of each of these reservoirs were used. We assume that the entrance to a reservoir in a given month must depend on the precipitation produced in its watershed (both the amount of rain and the intensity with which it fell), the precipitation collected from the previous months (and the way in which it was produced) and the evapotranspiration produced during that period. For each reservoir, we propose a model with nine parameters to simulate the arrival of rainfall to the reservoir, covering aspects from the amount and intensity of rain, past and present, to the level of evapotranspiration on a given area for a given date. These nine parameters are optimally adjusted through an artificial intelligence algorithm to maximize the correlation between real and simulated contributions. The results show how this model, adjusted for each reservoir, will let us predict how changes in the rainfall and temperature patterns, predicted, for example, by the IPCC models, will affect the future water levels at the studied reservoirs.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42265573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rainfed agriculture in Ethiopia has failed to produce enough food, to achieve the increasing demand for food. Pinpointing the appropriate site for rainwater harvesting (RWH) have a substantial contribution to increasing the available water and enhancing agricultural productivity. The current study related to the identification of the potential RWH sites was conducted at the Chacha watershed central highlands of Ethiopia which is endowed with rugged topography. The Geographic Information System with Analytical Hierarchy Process was used to generate the different maps for identifying appropriate sites for RWH. In this study, 11 factors that determine the RWH locations including slope, soil texture, runoff depth, land cover type, annual average rainfall, drainage density, lineament intensity, hydrologic soil group, antecedent moisture content, and distance to the roads were considered. The overall analyzed result shows that 10.50%, 71.10%, 17.90%, and 0.50% of the areas were found under highly, moderately, marginally suitable, and unsuitable areas for RWH, respectively. The RWH site selection was found highly dependent on a slope, soil texture, and runoff depth; moderately dependent on drainage density, annual average rainfall, and land use land cover; but less dependent on the other factors. The highly suitable areas for rainwater harvesting expansion are lands having a flat topography with a soil textural class of high-water holding capacity that can produce high runoff depth. The application of this study could be a baseline for planners and decision-makers and support any strategy adoption for appropriate RWH site selection.
{"title":"Identification of Suitable Rainwater Harvesting Sites Using Geospatial Techniques With AHP in Chacha Watershed, Jemma Sub-Basin Upper Blue Nile, Ethiopia","authors":"Abrha Ybeyn Gebremedhn, Yitea Seneshaw Getahun, Alebachew Shumye Moges, Fikrey Tesfay","doi":"10.1177/11786221231195831","DOIUrl":"https://doi.org/10.1177/11786221231195831","url":null,"abstract":"Rainfed agriculture in Ethiopia has failed to produce enough food, to achieve the increasing demand for food. Pinpointing the appropriate site for rainwater harvesting (RWH) have a substantial contribution to increasing the available water and enhancing agricultural productivity. The current study related to the identification of the potential RWH sites was conducted at the Chacha watershed central highlands of Ethiopia which is endowed with rugged topography. The Geographic Information System with Analytical Hierarchy Process was used to generate the different maps for identifying appropriate sites for RWH. In this study, 11 factors that determine the RWH locations including slope, soil texture, runoff depth, land cover type, annual average rainfall, drainage density, lineament intensity, hydrologic soil group, antecedent moisture content, and distance to the roads were considered. The overall analyzed result shows that 10.50%, 71.10%, 17.90%, and 0.50% of the areas were found under highly, moderately, marginally suitable, and unsuitable areas for RWH, respectively. The RWH site selection was found highly dependent on a slope, soil texture, and runoff depth; moderately dependent on drainage density, annual average rainfall, and land use land cover; but less dependent on the other factors. The highly suitable areas for rainwater harvesting expansion are lands having a flat topography with a soil textural class of high-water holding capacity that can produce high runoff depth. The application of this study could be a baseline for planners and decision-makers and support any strategy adoption for appropriate RWH site selection.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":"112 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135401546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11786221231180079
A. Dzvene, W. Tesfuhuney, S. Walker, G. Ceronio
Cover crops are a valuable tool for improving resources use, soil health, and productivity. However, the effects of intercropping cover crops as live mulches with cash crops can vary depending on the species, management practices, and environmental conditions. This study reviewed the literature on cover crop intercropping and identified key factors to consider for improved plant productivity and resources use when managing these cropping systems. Science Direct, Scopus, and Google Scholar were used to search for literature on managing cover crop intercropping as live mulches. Research has shown that annual cover crops are typically used in annual field crop systems, while perennial cover crops are typically used in orchards and vineyards. The effects of intercropping annual or perennial cover crops in vineyards, orchards, and field crop systems can vary from positive to negative, depending on the climate, soil, management, and production system. Therefore, there is no one-size-fits-all management strategy. However, there are some key factors that should be considered when managing cover crops, such as: compatibility, intercropping time, planting density, and termination time. The benefits of appropriate cover crop management include: extended growing season, increased soil fertility, resource use optimization, and increased biomass productivity. Cover crop intercropping can be a successful way to improve resource use, soil health and productivity, but it is important to carefully consider the specific crop and management practices to ensure success. Therefore, future research should optimize cover crop intercropping time and planting density in maize-based rainwater harvesting systems on productivity and resource use.
{"title":"Management of Cover Crop Intercropping for Live Mulch on Plant Productivity and Growth Resources: A Review","authors":"A. Dzvene, W. Tesfuhuney, S. Walker, G. Ceronio","doi":"10.1177/11786221231180079","DOIUrl":"https://doi.org/10.1177/11786221231180079","url":null,"abstract":"Cover crops are a valuable tool for improving resources use, soil health, and productivity. However, the effects of intercropping cover crops as live mulches with cash crops can vary depending on the species, management practices, and environmental conditions. This study reviewed the literature on cover crop intercropping and identified key factors to consider for improved plant productivity and resources use when managing these cropping systems. Science Direct, Scopus, and Google Scholar were used to search for literature on managing cover crop intercropping as live mulches. Research has shown that annual cover crops are typically used in annual field crop systems, while perennial cover crops are typically used in orchards and vineyards. The effects of intercropping annual or perennial cover crops in vineyards, orchards, and field crop systems can vary from positive to negative, depending on the climate, soil, management, and production system. Therefore, there is no one-size-fits-all management strategy. However, there are some key factors that should be considered when managing cover crops, such as: compatibility, intercropping time, planting density, and termination time. The benefits of appropriate cover crop management include: extended growing season, increased soil fertility, resource use optimization, and increased biomass productivity. Cover crop intercropping can be a successful way to improve resource use, soil health and productivity, but it is important to carefully consider the specific crop and management practices to ensure success. Therefore, future research should optimize cover crop intercropping time and planting density in maize-based rainwater harvesting systems on productivity and resource use.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43356195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11786221231176676
J. Ruiz‐Fernández, C. García‐Hernández, Mirella Ochoa-Álvarez, Mariana Van den Bergh, David Gallinar Cañedo, Benjamín González-Díaz
Even when the influence of climate on the geomorphological dynamics of mountain areas is well known, the ground and near-rock surface air thermal regimes of the highest altitude Cantabrian massifs still being poorly understood. This study, based on the examination of the thermal data obtained through the use of air and soil temperature dataloggers, aims to characterize the thermal regime of one of the most representative high mountain massifs of the Cantabrian Mountains: the Western Massif of the Picos de Europa. Results show the severe climatic conditions that prevail in the highest areas, where the snow cover lasts for 8 months on average, exerting an important insulating role of the soil. Thus, except on the uncovered rocky walls, the number of freeze-thaw cycles per year is low (0–16), with these cycles having a short duration and a low thermal amplitude. Significantly differences on annual thermal regimes have been confirmed; with two main phases (continued thaw phase and isothermal phase) and two minor transition phases at the ground, and only two main phases in near-rock surfaces (continued thaw phase and phase with a high number of FTCs).
{"title":"Ground and Near-Rock Surface Air Thermal Regimes in the High Mountain of the Picos De Europa (Cantabrian Mountains, NW Spain)","authors":"J. Ruiz‐Fernández, C. García‐Hernández, Mirella Ochoa-Álvarez, Mariana Van den Bergh, David Gallinar Cañedo, Benjamín González-Díaz","doi":"10.1177/11786221231176676","DOIUrl":"https://doi.org/10.1177/11786221231176676","url":null,"abstract":"Even when the influence of climate on the geomorphological dynamics of mountain areas is well known, the ground and near-rock surface air thermal regimes of the highest altitude Cantabrian massifs still being poorly understood. This study, based on the examination of the thermal data obtained through the use of air and soil temperature dataloggers, aims to characterize the thermal regime of one of the most representative high mountain massifs of the Cantabrian Mountains: the Western Massif of the Picos de Europa. Results show the severe climatic conditions that prevail in the highest areas, where the snow cover lasts for 8 months on average, exerting an important insulating role of the soil. Thus, except on the uncovered rocky walls, the number of freeze-thaw cycles per year is low (0–16), with these cycles having a short duration and a low thermal amplitude. Significantly differences on annual thermal regimes have been confirmed; with two main phases (continued thaw phase and isothermal phase) and two minor transition phases at the ground, and only two main phases in near-rock surfaces (continued thaw phase and phase with a high number of FTCs).","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45829999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11786221231197416
Ruzhen Wang, Baitao Gu
Rhizodeposition, as transported from photosynthates and exudated in soils via fine roots, is the pivot linking above- and belowground carbon (C) cycling pathways. Meanwhile, rhizodeposit C serves as “currency” for plant nutrient acquisition because of its critical roles in priming soil microorganisms, maintaining plant-mycorrhizal symbionts, and elongating plant roots. Therefore, a conceptual framework integrating knowledge on the biogeochemical fate of rhizodeposit C can help understand plant nutrient economics and soil C sink function. However, it still remains a great challenge to efficiently delineate the dynamics of rhizodeposit C in soils. In the framework, we present the possible stabilization pathways of rhizodeposit C via formation of mineral-associated organic matter (MAOM) or encapsulation by microaggregates. We further propose that continuous and pulse 13CO2 labeling are powerful techniques to track the fate of rhizodeposit C and to quantify how much C could eventually be sequestrated in soils as the component of MAOM or microaggregates. This framework would provide future research possibilities to better optimize plant C allocation and productivity and preserve soil C stocks.
{"title":"A Conceptual Framework on the Fate of Rhizodeposits in Forming Mineral-Associated Organic Matter or Encapsulating Into Microaggreagtes","authors":"Ruzhen Wang, Baitao Gu","doi":"10.1177/11786221231197416","DOIUrl":"https://doi.org/10.1177/11786221231197416","url":null,"abstract":"Rhizodeposition, as transported from photosynthates and exudated in soils via fine roots, is the pivot linking above- and belowground carbon (C) cycling pathways. Meanwhile, rhizodeposit C serves as “currency” for plant nutrient acquisition because of its critical roles in priming soil microorganisms, maintaining plant-mycorrhizal symbionts, and elongating plant roots. Therefore, a conceptual framework integrating knowledge on the biogeochemical fate of rhizodeposit C can help understand plant nutrient economics and soil C sink function. However, it still remains a great challenge to efficiently delineate the dynamics of rhizodeposit C in soils. In the framework, we present the possible stabilization pathways of rhizodeposit C via formation of mineral-associated organic matter (MAOM) or encapsulation by microaggregates. We further propose that continuous and pulse 13CO2 labeling are powerful techniques to track the fate of rhizodeposit C and to quantify how much C could eventually be sequestrated in soils as the component of MAOM or microaggregates. This framework would provide future research possibilities to better optimize plant C allocation and productivity and preserve soil C stocks.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45882213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11786221231200106
Abay Mustefa Abdule, Alemayehu Muluneh, Abraham Woldemichael
Climate and land use/cover (LULC) changes are essential factors that influence hydrological regimes by altering the groundwater recharge and river flow. This study investigated the separate and combined impact of climate and LULC changes on streamflow. The Soil and Water Assessment Tool (SWAT) was used to simulate streamflow under near-term (2021–2050) and mid-term (2051–2080) period against 1985 to 2015 baseline period. The Cellular Automata (CA)-Markov chain model was used to predict the future LULC change. The three-ensemble average of regional climate models (CCLM4.8, RACMO22T, EC-EARTH) under RCP 4.5 and RCP 8.5 emission scenarios were applied for future climate projection. The LULC predictions between 2035 and 2055 showed an increase in agricultural land, grassland, settlement areas and woodlands by 44.02%, 30.35%, 69.2%, and 55.05%, respectively, while forest and scrub/bush lands showed a decrease by decrease by 21.53% and 11.08%, respectively. The annual, wet, and dry seasons rainfall projections increased by 0.13%, 0.02%, and 0.85% respectively, during the near term period under RCP 4.5 scenarios. Overall, the annual, wet, and dry season rainfall projections showed slightly increasing tendency. The temperature projection consistently indicated a warmer future with the highest mean annual projected temperature being 2.0°C under high emission scenario during the midterm period. The projected streamflow under the combined impact of climate and LULC changes will increase by up to 8.72% in wet seasons and by up to 6.62% in dry seasons during the near-term period under RCP4.5 scenarios. Similarly, the projected mean annual streamflow will increase by up to 8.13%. The annual, wet and dry season’s streamflow projections showed a consistent increase during both near and midterm periods under both climate scenarios. Understanding the future response of streamflow under climate and LULC changes is crucial to plan adaptation options for water resources management under future warming condition.
{"title":"Impact of Climate and Land Use/Cover Changes on Streamflow in Yadot Watershed, Genale Dawa Basin, Ethiopia","authors":"Abay Mustefa Abdule, Alemayehu Muluneh, Abraham Woldemichael","doi":"10.1177/11786221231200106","DOIUrl":"https://doi.org/10.1177/11786221231200106","url":null,"abstract":"Climate and land use/cover (LULC) changes are essential factors that influence hydrological regimes by altering the groundwater recharge and river flow. This study investigated the separate and combined impact of climate and LULC changes on streamflow. The Soil and Water Assessment Tool (SWAT) was used to simulate streamflow under near-term (2021–2050) and mid-term (2051–2080) period against 1985 to 2015 baseline period. The Cellular Automata (CA)-Markov chain model was used to predict the future LULC change. The three-ensemble average of regional climate models (CCLM4.8, RACMO22T, EC-EARTH) under RCP 4.5 and RCP 8.5 emission scenarios were applied for future climate projection. The LULC predictions between 2035 and 2055 showed an increase in agricultural land, grassland, settlement areas and woodlands by 44.02%, 30.35%, 69.2%, and 55.05%, respectively, while forest and scrub/bush lands showed a decrease by decrease by 21.53% and 11.08%, respectively. The annual, wet, and dry seasons rainfall projections increased by 0.13%, 0.02%, and 0.85% respectively, during the near term period under RCP 4.5 scenarios. Overall, the annual, wet, and dry season rainfall projections showed slightly increasing tendency. The temperature projection consistently indicated a warmer future with the highest mean annual projected temperature being 2.0°C under high emission scenario during the midterm period. The projected streamflow under the combined impact of climate and LULC changes will increase by up to 8.72% in wet seasons and by up to 6.62% in dry seasons during the near-term period under RCP4.5 scenarios. Similarly, the projected mean annual streamflow will increase by up to 8.13%. The annual, wet and dry season’s streamflow projections showed a consistent increase during both near and midterm periods under both climate scenarios. Understanding the future response of streamflow under climate and LULC changes is crucial to plan adaptation options for water resources management under future warming condition.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135844958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11786221231154105
A. Gripp, J. G. F. Genovez, Quézia Souza Santos, Luís Eduardo Guerra Domingos Nogueira, C. A. Barboza, F. Esteves, R. Martins
Restinga forests and open scrubby formations establish on sandy well-drained soils alongside the Brazilian coastline. Restinga plants are exposed to extreme conditions and vegetation types are mainly structured by species access to groundwater. But to date, no systematic evaluations have been done in order to characterize soil microclimatic conditions and understand how they are associated with variations in climatic drivers. We evaluated hourly soil moisture and temperature along 84 days at Restinga Seasonal Dry Forest (SDF), sparse (Open Clusia Scrubs—OCS), and dense (Open Ericacea Scrubs—OES) tickets at Restinga de Jurubatiba National Park, at Rio de Janeiro state (Brazil). Due to distinctions on physical structure and access to groundwater between plant formations, we expected higher daily soil moisture and lower daily moisture and temperature variations on forests than on open vegetated areas. Daily soil moisture was higher, respectively, on SDF, OES, and OCS, whereas soil moisture and temperature variability presented the opposite trend (SDF < OES < OCS), supporting our hypotheses. Daily soil temperature dynamics are quite well predicted by solar radiation incidence patterns, whereas daily soil moisture is mainly regulated by precipitation at OCS, an interaction of precipitation and temperature at OES and delayed effects of precipitation at SDF. Our results corroborate our expectations that forests are more effective in buffering both air temperature and precipitation effects on soil conditions than open vegetated areas. They also indicate that soil moisture and temperature conditions are important aspects differentiating Restinga vegetation types.
Restinga森林和开阔的灌木丛形成在巴西海岸线排水良好的沙质土壤上。Restinga植物暴露在极端条件下,植被类型主要由物种对地下水的获取构成。但到目前为止,还没有进行系统的评估来描述土壤小气候条件,并了解它们与气候驱动因素的变化之间的关系。我们评估了84号公路沿线每小时的土壤湿度和温度 Restinga季节性干燥森林(SDF)的天数,里约热内卢州Restinga de Jurubatiba国家公园(巴西)的稀疏(Open Clusia Scrubs-OCS)和密集(Open Ericacea Scrubs/OES)门票。由于不同植物构造在物理结构和地下水获取方面的差异,我们预计森林的日土壤湿度比开放植被区更高,日湿度和温度变化更低。SDF、OES和OCS的日土壤湿度分别较高,而土壤湿度和温度变化趋势相反(SDF < OES < OCS),支持我们的假设。太阳辐射入射模式可以很好地预测日土壤温度动态,而日土壤湿度主要由OCS的降水量、OES的降水量和温度的相互作用以及SDF的降水延迟效应来调节。我们的研究结果证实了我们的预期,即森林在缓冲气温和降水对土壤条件的影响方面比开放植被地区更有效。它们还表明,土壤湿度和温度条件是区分Restinga植被类型的重要方面。
{"title":"Daily Variation on Soil Moisture and Temperature on Three Restinga Plant Formations","authors":"A. Gripp, J. G. F. Genovez, Quézia Souza Santos, Luís Eduardo Guerra Domingos Nogueira, C. A. Barboza, F. Esteves, R. Martins","doi":"10.1177/11786221231154105","DOIUrl":"https://doi.org/10.1177/11786221231154105","url":null,"abstract":"Restinga forests and open scrubby formations establish on sandy well-drained soils alongside the Brazilian coastline. Restinga plants are exposed to extreme conditions and vegetation types are mainly structured by species access to groundwater. But to date, no systematic evaluations have been done in order to characterize soil microclimatic conditions and understand how they are associated with variations in climatic drivers. We evaluated hourly soil moisture and temperature along 84 days at Restinga Seasonal Dry Forest (SDF), sparse (Open Clusia Scrubs—OCS), and dense (Open Ericacea Scrubs—OES) tickets at Restinga de Jurubatiba National Park, at Rio de Janeiro state (Brazil). Due to distinctions on physical structure and access to groundwater between plant formations, we expected higher daily soil moisture and lower daily moisture and temperature variations on forests than on open vegetated areas. Daily soil moisture was higher, respectively, on SDF, OES, and OCS, whereas soil moisture and temperature variability presented the opposite trend (SDF < OES < OCS), supporting our hypotheses. Daily soil temperature dynamics are quite well predicted by solar radiation incidence patterns, whereas daily soil moisture is mainly regulated by precipitation at OCS, an interaction of precipitation and temperature at OES and delayed effects of precipitation at SDF. Our results corroborate our expectations that forests are more effective in buffering both air temperature and precipitation effects on soil conditions than open vegetated areas. They also indicate that soil moisture and temperature conditions are important aspects differentiating Restinga vegetation types.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42061017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11786221221150186
M. B. Toma, Mulugeta Dadi Belete, M. Ulsido
Understanding how watersheds respond to ecological changes and how LULC alteration affects watershed hydrology is crucial for water and soil resource management. LULC changes in the Ajora-Woybo watershed, Ethiopia, have momentously affected the water and soil resources. The researchers aimed to see how LULC changes affect hydrological components (HCs) and sediment yield (SED) in the watershed, both historically and in the future. The Soil and Water Assessment Tool (SWAT2012) and Partial Least Squares Regression (PLSR) models were used to investigate the contribution of each of the LULC classes to achieve the goal. The findings revealed a continual growth of cultivated land, built-up areas, and bare land, and a retreat of shrub land and forest land during the 2000 to 2020 periods, which is expected to continue in the 2035 and 2050 periods. Changes in LULC that happened over the historical era increased yearly surface runoff (23.5%), water yield (5.7%), and sediment yield (23.5%). On the other hand, the observed modifications have reduced lateral flow (12.8%) and groundwater flow (10.9%). Except for the 2020 LULC period, evapotranspiration decreased during the studied years. The future impacts of LULC states are predicted to increase in line with the historical trend. The PLSR results showed that cultivated land and built-up areas had a positive association with surface runoff and sediment yield, but shrub land and forest land had a negative correlation. This highlights the importance of controlling the LULC change as soon as possible to maintain long-term watershed stability.
{"title":"Hydrological Components and Sediment Yield Response to Land Use Land Cover Change in The Ajora-Woybo Watershed of Omo-Gibe Basin, Ethiopia","authors":"M. B. Toma, Mulugeta Dadi Belete, M. Ulsido","doi":"10.1177/11786221221150186","DOIUrl":"https://doi.org/10.1177/11786221221150186","url":null,"abstract":"Understanding how watersheds respond to ecological changes and how LULC alteration affects watershed hydrology is crucial for water and soil resource management. LULC changes in the Ajora-Woybo watershed, Ethiopia, have momentously affected the water and soil resources. The researchers aimed to see how LULC changes affect hydrological components (HCs) and sediment yield (SED) in the watershed, both historically and in the future. The Soil and Water Assessment Tool (SWAT2012) and Partial Least Squares Regression (PLSR) models were used to investigate the contribution of each of the LULC classes to achieve the goal. The findings revealed a continual growth of cultivated land, built-up areas, and bare land, and a retreat of shrub land and forest land during the 2000 to 2020 periods, which is expected to continue in the 2035 and 2050 periods. Changes in LULC that happened over the historical era increased yearly surface runoff (23.5%), water yield (5.7%), and sediment yield (23.5%). On the other hand, the observed modifications have reduced lateral flow (12.8%) and groundwater flow (10.9%). Except for the 2020 LULC period, evapotranspiration decreased during the studied years. The future impacts of LULC states are predicted to increase in line with the historical trend. The PLSR results showed that cultivated land and built-up areas had a positive association with surface runoff and sediment yield, but shrub land and forest land had a negative correlation. This highlights the importance of controlling the LULC change as soon as possible to maintain long-term watershed stability.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42199144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11786221221145379
L. Salami, L. Popoola
Air pollutants generated as a result of operations of landfill sites pose a threat not only the environment but also to human life. This work focuses on comprehensive review of atmospheric air pollutants around landfill sites with a view of identifying areas where future studies can be conducted. Environmental and health effects of air pollutants within the vicinity of landfill sites and the ways of minimizing the level of the air pollutants were presented. Previous works carried out by scholars for the past two decades were critically examined. Mathematical models for prediction of gaseous pollutants for landfill sites and assessment of human health risk due of inhalation of poisonous gases from landfill sites were discussed. Amongst conclusions made were: (1) Further studies on health impacts of particulate matters (PMs) within the vicinity of landfill sites should focus on low-income countries (LIC) especially in Nigeria which has been perceived as the capital poverty of the world. (2) Developing countries have not been practicing Circular Municipal Solid Waste Management System (CMSW) due to some militating factors hence further works should look into how the militating factors can be surmounted and provide way forward for the implementation of CMSW in developing countries. (3) More works still need to be conducted especially in temperate region to mechanistically explain the positive correlation between PMs and Coronavirus disease. (4) Future works should dive into the cost and economic implications of assessing atmospheric air pollutants within the vicinity of landfill sites for policy making decisions.
{"title":"A Comprehensive Review of Atmospheric Air Pollutants Assessment Around Landfill Sites","authors":"L. Salami, L. Popoola","doi":"10.1177/11786221221145379","DOIUrl":"https://doi.org/10.1177/11786221221145379","url":null,"abstract":"Air pollutants generated as a result of operations of landfill sites pose a threat not only the environment but also to human life. This work focuses on comprehensive review of atmospheric air pollutants around landfill sites with a view of identifying areas where future studies can be conducted. Environmental and health effects of air pollutants within the vicinity of landfill sites and the ways of minimizing the level of the air pollutants were presented. Previous works carried out by scholars for the past two decades were critically examined. Mathematical models for prediction of gaseous pollutants for landfill sites and assessment of human health risk due of inhalation of poisonous gases from landfill sites were discussed. Amongst conclusions made were: (1) Further studies on health impacts of particulate matters (PMs) within the vicinity of landfill sites should focus on low-income countries (LIC) especially in Nigeria which has been perceived as the capital poverty of the world. (2) Developing countries have not been practicing Circular Municipal Solid Waste Management System (CMSW) due to some militating factors hence further works should look into how the militating factors can be surmounted and provide way forward for the implementation of CMSW in developing countries. (3) More works still need to be conducted especially in temperate region to mechanistically explain the positive correlation between PMs and Coronavirus disease. (4) Future works should dive into the cost and economic implications of assessing atmospheric air pollutants within the vicinity of landfill sites for policy making decisions.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44986760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/11786221221150183
Mitiku Badasa Moisa, T. W. Bulto, Birhanu Chalchisa Werku, Yifru Waktole Berkessa, A. Chebo, Daniel Assefa Negash, D. O. Gemeda
Wetland ecosystems are one of the most important areas that provides different ecosystems services as well as habitat for plant and animal species. In spite of multipurpose, wetland ecosystems are under threats. This study attempts to analyze wetland dynamics of Abay Choman and Jimma Geneti watershed in Horo Guduru Wollega Zone, Western Ethiopia using geospatial techniques. The land use land cover (LULC), the Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI) were investigated using Landsat 5 TM of 1991, Landsat 7ETM+ of 2003, and OLI/TIRS of 2021. In the present study, the LULC was classified using a supervised classification method with maximum likelihood algorithm. The red and infrared bands of Landsat imagery from three different time periods were used to calculate NDVI, while the NDWI was estimated using the green and near infrared (NIR) bands of multispectral Landsat images. Results show that wetland ecosystem in the study area decreased by about 125.2 km2 (8.8%) with the rate of 4.2 km2/year. In contrast, agricultural land increased by 223.4 km2 with the rate of 7.4 km2/year between 1991 and 2021. About 66.7 km2 wetland was converted to cultivated land whereas 29.3 and 24.7 km2 of grassland and shrubs land were converted into cultivated land. As a result, the maximum NDVI and NDWI values were decreased between 1991 and 2021. To minimize the rapid loss of wetland and water bodies in the study area, proper land use planning and environmental education should be promoted.
{"title":"Analyzing Wetland Dynamics Using Geospatial Techniques: A Case of Abay Choman and Jimma Geneti Watershed, Horo Guduru Wollega Zone, Western Ethiopia","authors":"Mitiku Badasa Moisa, T. W. Bulto, Birhanu Chalchisa Werku, Yifru Waktole Berkessa, A. Chebo, Daniel Assefa Negash, D. O. Gemeda","doi":"10.1177/11786221221150183","DOIUrl":"https://doi.org/10.1177/11786221221150183","url":null,"abstract":"Wetland ecosystems are one of the most important areas that provides different ecosystems services as well as habitat for plant and animal species. In spite of multipurpose, wetland ecosystems are under threats. This study attempts to analyze wetland dynamics of Abay Choman and Jimma Geneti watershed in Horo Guduru Wollega Zone, Western Ethiopia using geospatial techniques. The land use land cover (LULC), the Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI) were investigated using Landsat 5 TM of 1991, Landsat 7ETM+ of 2003, and OLI/TIRS of 2021. In the present study, the LULC was classified using a supervised classification method with maximum likelihood algorithm. The red and infrared bands of Landsat imagery from three different time periods were used to calculate NDVI, while the NDWI was estimated using the green and near infrared (NIR) bands of multispectral Landsat images. Results show that wetland ecosystem in the study area decreased by about 125.2 km2 (8.8%) with the rate of 4.2 km2/year. In contrast, agricultural land increased by 223.4 km2 with the rate of 7.4 km2/year between 1991 and 2021. About 66.7 km2 wetland was converted to cultivated land whereas 29.3 and 24.7 km2 of grassland and shrubs land were converted into cultivated land. As a result, the maximum NDVI and NDWI values were decreased between 1991 and 2021. To minimize the rapid loss of wetland and water bodies in the study area, proper land use planning and environmental education should be promoted.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45370051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}