Smartphone imaging technology and its applications

IF 2.3 Q2 OPTICS Advanced Optical Technologies Pub Date : 2021-06-01 DOI:10.1515/aot-2021-0023
Vladan Blahnik, Oliver Schindelbeck
{"title":"Smartphone imaging technology and its applications","authors":"Vladan Blahnik, Oliver Schindelbeck","doi":"10.1515/aot-2021-0023","DOIUrl":null,"url":null,"abstract":"Abstract Thanks to their portability, connectivity, and their image performance – which is constantly improving – smartphone cameras (SPCs) have been people’s loyal companions for quite a while now. In the past few years, multicamera systems have become well and truly established, alongside 3D acquisition systems such as time-of-flight (ToF) sensors. This article looks at the evolution and status of SPC imaging technology. After a brief assessment of the SPC market and supply chain, the camera system and optical image formation is described in more detail. Subsequently, the basic requirements and physical limitations of smartphone imaging are examined, and the optical design of state-of-the-art multicameras is reviewed alongside their optical technology and manufacturing process. The evolution of complementary metal oxide semiconductor (CMOS) image sensors and basic image processing is then briefly summarized. Advanced functions such as a zoom, shallow depth-of-field portrait mode, high dynamic range (HDR), and fast focusing are enabled by computational imaging. Optical image stabilization has greatly improved image performance, enabled as it is by built-in sensors such as a gyroscope and accelerometer. Finally, SPCs’ connection interface with telescopes, microscopes, and other auxiliary optical systems is reviewed.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2021-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 26

Abstract

Abstract Thanks to their portability, connectivity, and their image performance – which is constantly improving – smartphone cameras (SPCs) have been people’s loyal companions for quite a while now. In the past few years, multicamera systems have become well and truly established, alongside 3D acquisition systems such as time-of-flight (ToF) sensors. This article looks at the evolution and status of SPC imaging technology. After a brief assessment of the SPC market and supply chain, the camera system and optical image formation is described in more detail. Subsequently, the basic requirements and physical limitations of smartphone imaging are examined, and the optical design of state-of-the-art multicameras is reviewed alongside their optical technology and manufacturing process. The evolution of complementary metal oxide semiconductor (CMOS) image sensors and basic image processing is then briefly summarized. Advanced functions such as a zoom, shallow depth-of-field portrait mode, high dynamic range (HDR), and fast focusing are enabled by computational imaging. Optical image stabilization has greatly improved image performance, enabled as it is by built-in sensors such as a gyroscope and accelerometer. Finally, SPCs’ connection interface with telescopes, microscopes, and other auxiliary optical systems is reviewed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能手机成像技术及其应用
摘要由于其便携性、连接性和不断改进的图像性能,智能手机摄像头(SPC)已经成为人们的忠实伴侣很长一段时间了。在过去的几年里,多摄像机系统已经与飞行时间(ToF)传感器等3D采集系统一起得到了很好的建立。本文介绍SPC成像技术的发展和现状。在简要评估SPC市场和供应链后,对相机系统和光学图像形成进行了更详细的描述。随后,研究了智能手机成像的基本要求和物理限制,并回顾了最先进的多摄像头的光学设计及其光学技术和制造过程。然后简要总结了互补金属氧化物半导体(CMOS)图像传感器的发展和基本图像处理。通过计算成像实现了变焦、浅景深人像模式、高动态范围(HDR)和快速对焦等高级功能。光学图像稳定大大提高了图像性能,内置传感器如陀螺仪和加速度计实现了这一功能。最后,对SPC与望远镜、显微镜和其他辅助光学系统的连接接口进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
23
期刊介绍: Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.
期刊最新文献
Technology and research on the influence of liquid crystal cladding doped with magnetic Fe3O4 nanoparticles on light propagation in an optical taper sensor Optical non-linearities and applications of ZnS phosphors Intelligent visually lossless compression of dental images Erratum: Terahertz focusing blazed diffractive optical elements for frequency demultiplexing Investigation of laser-induced contamination on dielectric thin films in MHz sub-ps regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1