Jason R. Grenier, L. Brusberg, K. Wieland, Juergen Matthies, Chad C. Terwilliger
{"title":"Ultrafast laser processing of glass waveguide substrates for multi-fiber connectivity in co-packaged optics","authors":"Jason R. Grenier, L. Brusberg, K. Wieland, Juergen Matthies, Chad C. Terwilliger","doi":"10.3389/aot.2023.1244009","DOIUrl":null,"url":null,"abstract":"High bandwidth demanding applications such as high-performance computing and hyperscale datacenters are drivers for co-packaged optics, which aims to bring optical signals as close as possible to the electrical computing chips by integrating the electro-optic transceivers and ASICs on the same package substrate. These next-generation switches require advanced fiber-to-chip connectivity and novel packaging concepts to enable sufficient power and cost savings. As such, low-loss, high bandwidth, and high fiber-counts are required at the photonic chip interface. In this work, these challenges are addressed by enabling the multi-fiber push-on (MPO) interface at the edge of integrated glass waveguide substrates and thus leverages the existing fiber connector eco-system. An ultrafast laser process is used to singulate glass wafers into individual photonic chips leaving optical-quality end-facets with <1 μm flatness over the 6.5 mm wide connector region thereby directly enabling low-loss fiber-to-chip edge-coupling. To overcome the high-costs and complex photonic packaging associated with active alignment of the fiber connectors to the glass waveguide interfaces, ultrafast laser-ablated features are accurately positioned on the glass substrate to enable self-alignment of the MPO connector guide-pins resulting in a passive alignment approach. Subsequent mating and de-mating of the MPO connector to the glass waveguide interface yields on average a 0.19 dB increase in the coupling loss compared to using active alignment.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/aot.2023.1244009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
High bandwidth demanding applications such as high-performance computing and hyperscale datacenters are drivers for co-packaged optics, which aims to bring optical signals as close as possible to the electrical computing chips by integrating the electro-optic transceivers and ASICs on the same package substrate. These next-generation switches require advanced fiber-to-chip connectivity and novel packaging concepts to enable sufficient power and cost savings. As such, low-loss, high bandwidth, and high fiber-counts are required at the photonic chip interface. In this work, these challenges are addressed by enabling the multi-fiber push-on (MPO) interface at the edge of integrated glass waveguide substrates and thus leverages the existing fiber connector eco-system. An ultrafast laser process is used to singulate glass wafers into individual photonic chips leaving optical-quality end-facets with <1 μm flatness over the 6.5 mm wide connector region thereby directly enabling low-loss fiber-to-chip edge-coupling. To overcome the high-costs and complex photonic packaging associated with active alignment of the fiber connectors to the glass waveguide interfaces, ultrafast laser-ablated features are accurately positioned on the glass substrate to enable self-alignment of the MPO connector guide-pins resulting in a passive alignment approach. Subsequent mating and de-mating of the MPO connector to the glass waveguide interface yields on average a 0.19 dB increase in the coupling loss compared to using active alignment.
期刊介绍:
Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.