首页 > 最新文献

Advanced Optical Technologies最新文献

英文 中文
Erratum: Terahertz focusing blazed diffractive optical elements for frequency demultiplexing 勘误:用于频率解复用的太赫兹聚焦炽热衍射光学元件
IF 1.8 Q2 OPTICS Pub Date : 2024-01-05 DOI: 10.3389/aot.2023.1360163
{"title":"Erratum: Terahertz focusing blazed diffractive optical elements for frequency demultiplexing","authors":"","doi":"10.3389/aot.2023.1360163","DOIUrl":"https://doi.org/10.3389/aot.2023.1360163","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"10 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139383129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of laser-induced contamination on dielectric thin films in MHz sub-ps regime 研究介电薄膜在 MHz sub-ps 机制下的激光诱导污染问题
IF 1.8 Q2 OPTICS Pub Date : 2024-01-04 DOI: 10.3389/aot.2023.1261267
M. Stehlik, J. Zideluns, Camille Petite, Valentin Allard, Marco Minissale, A. Moreau, A. Lereu, F. Lemarchand, Frank Wagner, Julien Lumeau, Laurent Gallais
High-repetition rate diode-pumped sub-ps lasers are widely used in the industrial sector for high-quality material processing applications. However, for their reliable operation, it is crucial to study the power handling capabilities of the optical components used in these systems. The optical components, such as mirrors, gratings, dichroic filters, and gain media, are designed based on dielectric thin films. When subjected to high-intensity laser radiation, the phenomenon of laser-induced contamination (LIC) can lead to the growth of a nanometric, highly absorbent layer on an irradiated optical surface, which can result in transmission or reflection loss and eventual permanent damage. In this study, we investigate LIC growth on dielectric oxide thin films in an air environment irradiated by MHz sub-ps laser at 515 nm. We examine the effect of thin film deposition method, material, and thickness on LIC growth dynamics. The irradiated spots on the surface are inspected using multiple observation methods, including white light interference microscopy and fluorescence imaging. Our results show that the LIC growth dynamics depend on the laser intensity and irradiation time and can be affected by the thin film deposition method, material, and thickness. These findings could be used to inform the development of more resistant optical components, ensuring long-term reliable laser operation required for industrial applications. The study highlights the need for validating optical components using tests that closely mimic real-world applications and provides insight into the complex processes that lead to LIC.
高重复率二极管泵浦亚 ps 激光器广泛应用于工业领域的高质量材料加工应用。然而,为了保证其可靠运行,研究这些系统中使用的光学元件的功率处理能力至关重要。反射镜、光栅、分色滤光片和增益介质等光学元件都是基于介电薄膜设计的。当受到高强度激光辐射时,激光诱导污染(LIC)现象会导致受辐射光学表面生长出纳米级的高吸收层,从而导致传输或反射损失,最终造成永久性损坏。在本研究中,我们研究了在 515 纳米 MHz sub-ps 激光照射的空气环境中,介质氧化物薄膜上的 LIC 生长情况。我们研究了薄膜沉积方法、材料和厚度对 LIC 生长动态的影响。我们采用多种观察方法,包括白光干涉显微镜和荧光成像,对表面的辐照点进行了检测。我们的结果表明,LIC 的生长动态取决于激光强度和辐照时间,并且会受到薄膜沉积方法、材料和厚度的影响。这些发现可用于开发更耐久的光学元件,确保工业应用所需的激光长期可靠运行。这项研究强调了使用接近真实世界应用的测试来验证光学元件的必要性,并提供了对导致 LIC 的复杂过程的深入了解。
{"title":"Investigation of laser-induced contamination on dielectric thin films in MHz sub-ps regime","authors":"M. Stehlik, J. Zideluns, Camille Petite, Valentin Allard, Marco Minissale, A. Moreau, A. Lereu, F. Lemarchand, Frank Wagner, Julien Lumeau, Laurent Gallais","doi":"10.3389/aot.2023.1261267","DOIUrl":"https://doi.org/10.3389/aot.2023.1261267","url":null,"abstract":"High-repetition rate diode-pumped sub-ps lasers are widely used in the industrial sector for high-quality material processing applications. However, for their reliable operation, it is crucial to study the power handling capabilities of the optical components used in these systems. The optical components, such as mirrors, gratings, dichroic filters, and gain media, are designed based on dielectric thin films. When subjected to high-intensity laser radiation, the phenomenon of laser-induced contamination (LIC) can lead to the growth of a nanometric, highly absorbent layer on an irradiated optical surface, which can result in transmission or reflection loss and eventual permanent damage. In this study, we investigate LIC growth on dielectric oxide thin films in an air environment irradiated by MHz sub-ps laser at 515 nm. We examine the effect of thin film deposition method, material, and thickness on LIC growth dynamics. The irradiated spots on the surface are inspected using multiple observation methods, including white light interference microscopy and fluorescence imaging. Our results show that the LIC growth dynamics depend on the laser intensity and irradiation time and can be affected by the thin film deposition method, material, and thickness. These findings could be used to inform the development of more resistant optical components, ensuring long-term reliable laser operation required for industrial applications. The study highlights the need for validating optical components using tests that closely mimic real-world applications and provides insight into the complex processes that lead to LIC.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"56 13","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terahertz focusing blazed diffractive optical elements for frequency demultiplexing 用于频率解复用的太赫兹聚焦炽热衍射光学元件
IF 1.8 Q2 OPTICS Pub Date : 2023-12-01 DOI: 10.3389/aot.2023.1310578
M. Kaluza, P. Komorowski, P. Zagrajek, A. Siemion
This study presents the novel optical passive components for spatial frequency division demultiplexing of terahertz (THz) radiation. Four different diffractive optical elements (DOEs) were designed as the combination of phase kinoform lenses and phase blazed diffraction gratings. The designed structures were verified in numerical simulations and they showed the promising results. Subsequently, they were manufactured using fused deposition modeling (FDM) 3D printing technology from highly transparent cyclic olefin copolymer (COC). The manufactured structures were examined in the experimental setup. The results matched numerical simulations. Thus, eight frequencies in the range from 150 GHz to 220 GHz every 10 GHz were spatially separated. The novel design solution guaranteed 63% higher relative efficiency compared to the reference DOE. The presented study can be suitable as the application for 6G technology telecommunication systems as the spatial frequency division demultiplexing component for the THz radiation band.
提出了一种用于太赫兹(THz)辐射空间频分解复用的新型光无源元件。设计了四种不同的衍射光学元件(DOEs),即相kinoform透镜和相燃烧衍射光栅的组合。所设计的结构在数值模拟中得到了验证,取得了良好的效果。随后,他们使用高透明环烯烃共聚物(COC)的熔融沉积建模(FDM) 3D打印技术进行制造。在实验装置中对制造的结构进行了检验。结果与数值模拟结果吻合。因此,在150 GHz至220 GHz的范围内,每10 GHz有8个频率在空间上分开。与参考DOE相比,新颖的设计方案保证了63%的相对效率。本研究可作为太赫兹辐射频段的空间频分解复用组件,适用于6G技术电信系统的应用。
{"title":"Terahertz focusing blazed diffractive optical elements for frequency demultiplexing","authors":"M. Kaluza, P. Komorowski, P. Zagrajek, A. Siemion","doi":"10.3389/aot.2023.1310578","DOIUrl":"https://doi.org/10.3389/aot.2023.1310578","url":null,"abstract":"This study presents the novel optical passive components for spatial frequency division demultiplexing of terahertz (THz) radiation. Four different diffractive optical elements (DOEs) were designed as the combination of phase kinoform lenses and phase blazed diffraction gratings. The designed structures were verified in numerical simulations and they showed the promising results. Subsequently, they were manufactured using fused deposition modeling (FDM) 3D printing technology from highly transparent cyclic olefin copolymer (COC). The manufactured structures were examined in the experimental setup. The results matched numerical simulations. Thus, eight frequencies in the range from 150 GHz to 220 GHz every 10 GHz were spatially separated. The novel design solution guaranteed 63% higher relative efficiency compared to the reference DOE. The presented study can be suitable as the application for 6G technology telecommunication systems as the spatial frequency division demultiplexing component for the THz radiation band.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":" 32","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138613394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast laser processing of glass waveguide substrates for multi-fiber connectivity in co-packaged optics 用于共封装光学器件中多光纤连接的玻璃波导衬底的超快激光处理
IF 1.8 Q2 OPTICS Pub Date : 2023-08-30 DOI: 10.3389/aot.2023.1244009
Jason R. Grenier, L. Brusberg, K. Wieland, Juergen Matthies, Chad C. Terwilliger
High bandwidth demanding applications such as high-performance computing and hyperscale datacenters are drivers for co-packaged optics, which aims to bring optical signals as close as possible to the electrical computing chips by integrating the electro-optic transceivers and ASICs on the same package substrate. These next-generation switches require advanced fiber-to-chip connectivity and novel packaging concepts to enable sufficient power and cost savings. As such, low-loss, high bandwidth, and high fiber-counts are required at the photonic chip interface. In this work, these challenges are addressed by enabling the multi-fiber push-on (MPO) interface at the edge of integrated glass waveguide substrates and thus leverages the existing fiber connector eco-system. An ultrafast laser process is used to singulate glass wafers into individual photonic chips leaving optical-quality end-facets with <1 μm flatness over the 6.5 mm wide connector region thereby directly enabling low-loss fiber-to-chip edge-coupling. To overcome the high-costs and complex photonic packaging associated with active alignment of the fiber connectors to the glass waveguide interfaces, ultrafast laser-ablated features are accurately positioned on the glass substrate to enable self-alignment of the MPO connector guide-pins resulting in a passive alignment approach. Subsequent mating and de-mating of the MPO connector to the glass waveguide interface yields on average a 0.19 dB increase in the coupling loss compared to using active alignment.
高性能计算和超大规模数据中心等高带宽应用是共封装光学器件的驱动因素,该器件旨在通过在同一封装基板上集成电光收发器和ASIC,使光信号尽可能接近电计算芯片。这些下一代交换机需要先进的光纤到芯片连接和新颖的封装概念,以实现足够的功率和成本节约。因此,在光子芯片接口处需要低损耗、高带宽和高光纤计数。在这项工作中,通过在集成玻璃波导基板的边缘启用多光纤推入式(MPO)接口来解决这些挑战,从而利用现有的光纤连接器生态系统。使用超快激光工艺将玻璃晶片分割成单个光子芯片,在6.5mm宽的连接器区域上留下平坦度<1μm的光学质量端面,从而直接实现低损耗光纤到芯片的边缘耦合。为了克服与光纤连接器与玻璃波导接口的主动对准相关的高成本和复杂的光子封装,超快激光烧蚀特征被精确地定位在玻璃基板上,以实现MPO连接器导销的自对准,从而产生被动对准方法。MPO连接器与玻璃波导接口的后续配合和解除配合与使用有源对准相比,平均产生0.19dB的耦合损耗增加。
{"title":"Ultrafast laser processing of glass waveguide substrates for multi-fiber connectivity in co-packaged optics","authors":"Jason R. Grenier, L. Brusberg, K. Wieland, Juergen Matthies, Chad C. Terwilliger","doi":"10.3389/aot.2023.1244009","DOIUrl":"https://doi.org/10.3389/aot.2023.1244009","url":null,"abstract":"High bandwidth demanding applications such as high-performance computing and hyperscale datacenters are drivers for co-packaged optics, which aims to bring optical signals as close as possible to the electrical computing chips by integrating the electro-optic transceivers and ASICs on the same package substrate. These next-generation switches require advanced fiber-to-chip connectivity and novel packaging concepts to enable sufficient power and cost savings. As such, low-loss, high bandwidth, and high fiber-counts are required at the photonic chip interface. In this work, these challenges are addressed by enabling the multi-fiber push-on (MPO) interface at the edge of integrated glass waveguide substrates and thus leverages the existing fiber connector eco-system. An ultrafast laser process is used to singulate glass wafers into individual photonic chips leaving optical-quality end-facets with <1 μm flatness over the 6.5 mm wide connector region thereby directly enabling low-loss fiber-to-chip edge-coupling. To overcome the high-costs and complex photonic packaging associated with active alignment of the fiber connectors to the glass waveguide interfaces, ultrafast laser-ablated features are accurately positioned on the glass substrate to enable self-alignment of the MPO connector guide-pins resulting in a passive alignment approach. Subsequent mating and de-mating of the MPO connector to the glass waveguide interface yields on average a 0.19 dB increase in the coupling loss compared to using active alignment.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43118179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light along curves: photonic shaping tools 光沿曲线:光子整形工具
IF 1.8 Q2 OPTICS Pub Date : 2023-07-26 DOI: 10.3389/aot.2023.1237132
D. Flamm, J. Hellstern, M. Kaiser, M. Kahmann, J. Kleiner, C. Tillkorn
A structured light concept is reported enabling to distribute a large number of focus copies at arbitrary positions in a working volume. Applying this holographic 3D-beam splitter concept to ultrashort laser pulses allows to deposit energy along accelerating trajectories in the volume of transparent materials. Based on the entirety of the volume modifications created in this way, the material can be separated, for example, to create chamfered glass edges. These photonic tools impress with enormous versatility, which enable equally diverse application strategies ranging from cutting and welding to data storing.
据报道,一种结构光概念能够在工作体积中的任意位置分发大量聚焦副本。将这种全息3D分束器概念应用于超短激光脉冲,可以在透明材料的体积中沿着加速轨迹沉积能量。基于以这种方式创建的整个体积修改,可以分离材质,例如创建倒角玻璃边缘。这些光子工具具有巨大的通用性,可以实现从切割、焊接到数据存储等多种应用策略。
{"title":"Light along curves: photonic shaping tools","authors":"D. Flamm, J. Hellstern, M. Kaiser, M. Kahmann, J. Kleiner, C. Tillkorn","doi":"10.3389/aot.2023.1237132","DOIUrl":"https://doi.org/10.3389/aot.2023.1237132","url":null,"abstract":"A structured light concept is reported enabling to distribute a large number of focus copies at arbitrary positions in a working volume. Applying this holographic 3D-beam splitter concept to ultrashort laser pulses allows to deposit energy along accelerating trajectories in the volume of transparent materials. Based on the entirety of the volume modifications created in this way, the material can be separated, for example, to create chamfered glass edges. These photonic tools impress with enormous versatility, which enable equally diverse application strategies ranging from cutting and welding to data storing.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43152703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Polarization-dependent orientation of LiNbO3:Eu3+ nanocrystals using ultrashort laser pulses in borosilicate glasses 硼硅酸盐玻璃中超短激光脉冲作用下LiNbO3:Eu3+纳米晶体的偏振相关取向
IF 1.8 Q2 OPTICS Pub Date : 2023-07-25 DOI: 10.3389/aot.2023.1237570
J. Ari, M. Cavillon, M. Lancry, B. Poumellec
Femtosecond (fs) laser writing is a flexible way to induce three-dimensional local structural modifications inside glass materials, such as crystallization. The latter is a function of both glass composition, hence properties, and laser parameters. Previous works have shown that a glass composition of 33Li2O–33Nb2O5–13SiO2–21B2O3 (LNSB) mol% yields to crystallization of laser polarization orientable LiNbO3 nanocrystals upon irradiation with a 1,030 nm fs laser. In this paper, we present the effects of rare earth incorporation in the glass composition [i.e., europium (0.5, 1, and 2 mol%)] on the crystallization process of LiNbO3 nanocrystals induced by fs laser irradiation. The embedding of Eu3+ ions into these nanostructures has an interest in developing new integrated and miniaturized optical lasers and amplifiers in visible wavelengths. The influence of laser parameters, such as repetition rate (RR), pulse energy, and polarization, has been studied. Irradiated areas are investigated using optical and electron microscopy techniques. The effect of Eu3+ concentration on the crystallization behavior (crystal formation and morphology) is discussed, as Eu2O3 is not acting as a nucleation agent in LNSB glass up to 2 mol%.
飞秒(fs)激光写入是一种灵活的方式,可以诱导玻璃材料内部的三维局部结构改变,如结晶。后者是玻璃成分、性能和激光参数的函数。先前的工作表明,在1030 nm fs激光照射下,33Li2O–33Nb2O5–13SiO2–21B2O3(LNSB)mol%的玻璃成分可使激光偏振定向的LiNbO3纳米晶体结晶。在本文中,我们提出了在玻璃组合物中掺入稀土[即铕(0.5、1和2mol%)]对fs激光辐照诱导的LiNbO3纳米晶体结晶过程的影响。将Eu3+离子嵌入这些纳米结构中,有兴趣开发新的集成和小型化可见波长的光学激光器和放大器。研究了重复率(RR)、脉冲能量和偏振等激光参数的影响。使用光学和电子显微镜技术对辐照区域进行了研究。讨论了Eu3+浓度对结晶行为(晶体形成和形态)的影响,因为Eu2O3在高达2mol%的LNSB玻璃中不起成核剂的作用。
{"title":"Polarization-dependent orientation of LiNbO3:Eu3+ nanocrystals using ultrashort laser pulses in borosilicate glasses","authors":"J. Ari, M. Cavillon, M. Lancry, B. Poumellec","doi":"10.3389/aot.2023.1237570","DOIUrl":"https://doi.org/10.3389/aot.2023.1237570","url":null,"abstract":"Femtosecond (fs) laser writing is a flexible way to induce three-dimensional local structural modifications inside glass materials, such as crystallization. The latter is a function of both glass composition, hence properties, and laser parameters. Previous works have shown that a glass composition of 33Li2O–33Nb2O5–13SiO2–21B2O3 (LNSB) mol% yields to crystallization of laser polarization orientable LiNbO3 nanocrystals upon irradiation with a 1,030 nm fs laser. In this paper, we present the effects of rare earth incorporation in the glass composition [i.e., europium (0.5, 1, and 2 mol%)] on the crystallization process of LiNbO3 nanocrystals induced by fs laser irradiation. The embedding of Eu3+ ions into these nanostructures has an interest in developing new integrated and miniaturized optical lasers and amplifiers in visible wavelengths. The influence of laser parameters, such as repetition rate (RR), pulse energy, and polarization, has been studied. Irradiated areas are investigated using optical and electron microscopy techniques. The effect of Eu3+ concentration on the crystallization behavior (crystal formation and morphology) is discussed, as Eu2O3 is not acting as a nucleation agent in LNSB glass up to 2 mol%.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49588970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoinduced self-assembly of nanocrystals inside Al2O3-Lu2O3 glass 纳米晶体在Al2O3-Lu2O3玻璃中的光诱导自组装
IF 1.8 Q2 OPTICS Pub Date : 2023-07-25 DOI: 10.3389/aot.2023.1237663
T. Okuno, Y. Shimotsuma, M. Shimizu, K. Miura
The femtosecond laser direct writing technique can allow spatially selective crystallization with suppression of thermal conduction effects. In the case of Al2O3-R2O3 (R = Y, Dy) glass, the polarization-dependent periodic nanostructure with crystallization is self-assembled, however, the formation mechanism of self-assembled nanocrystals in glass remains to be clarified. We focused on Al2O3-Lu2O3 glass prepared by a containerless laser melting method and demonstrated the formation of a nanograting with crystallization by femtosecond laser irradiation. Polarized luminescence measurements of the crystallized region by the pulse bursts with a controllable number of pulses reveal that luminescence anisotropy increased at more than 50 pulses in a burst, suggesting the formation of the nanograting. We have also followed the time variation of birefringence by polarized light imaging to evaluate the time scale for the formation of nanogratings with crystallization.
飞秒激光直接写入技术可以在抑制热传导效应的情况下实现空间选择性结晶。在Al2O3-R2O3(R=Y,Dy)玻璃的情况下,具有结晶的极化依赖性周期性纳米结构是自组装的,然而,自组装纳米晶体在玻璃中的形成机制仍有待阐明。我们重点研究了用无容器激光熔融方法制备的Al2O3-Lu2O3玻璃,并演示了飞秒激光照射下结晶形成的纳米光栅。通过具有可控脉冲数的脉冲串对结晶区域的偏振发光测量表明,在脉冲串中超过50个脉冲时,发光各向异性增加,这表明纳米光栅的形成。我们还通过偏振光成像跟踪了双折射的时间变化,以评估形成结晶纳米光栅的时间尺度。
{"title":"Photoinduced self-assembly of nanocrystals inside Al2O3-Lu2O3 glass","authors":"T. Okuno, Y. Shimotsuma, M. Shimizu, K. Miura","doi":"10.3389/aot.2023.1237663","DOIUrl":"https://doi.org/10.3389/aot.2023.1237663","url":null,"abstract":"The femtosecond laser direct writing technique can allow spatially selective crystallization with suppression of thermal conduction effects. In the case of Al2O3-R2O3 (R = Y, Dy) glass, the polarization-dependent periodic nanostructure with crystallization is self-assembled, however, the formation mechanism of self-assembled nanocrystals in glass remains to be clarified. We focused on Al2O3-Lu2O3 glass prepared by a containerless laser melting method and demonstrated the formation of a nanograting with crystallization by femtosecond laser irradiation. Polarized luminescence measurements of the crystallized region by the pulse bursts with a controllable number of pulses reveal that luminescence anisotropy increased at more than 50 pulses in a burst, suggesting the formation of the nanograting. We have also followed the time variation of birefringence by polarized light imaging to evaluate the time scale for the formation of nanogratings with crystallization.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46817144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional femtosecond laser inscription of type a-based high-efficiency first-order waveguide Bragg gratings 基于a型高效一阶波导布拉格光栅的三维飞秒激光刻字
IF 1.8 Q2 OPTICS Pub Date : 2023-07-25 DOI: 10.3389/aot.2023.1237679
R. Laberdesque, Laura Loi, T. Guérineau, Alain Abou Khalil, S. Danto, T. Cardinal, L. Canioni, Y. Petit
A novel type of waveguide Bragg grating (WBG) is demonstrated based on femtosecond laser-induced Type A refractive index modifications, namely based of the photochemistry of silver species in a specialty ortho-phosphate glass matrix. First-order WBGs are reported in the near-infrared and down to 736 nm in the visible. Relative transmission measurements with a 500 µm long WBGs lead to narrow-bandwidth attenuations (sub-nm spectral FWHM) from 2.29 dB to 6.25 dB for periods from 240 nm to 280 nm, respectively. The corresponding estimated backward coupling coefficients show high values from 1.66 mm-1 up to 2.69 mm-1. Additionally, we report on a true 3D helix-shaped WBG that shows an even stronger relative attenuation of 10.3 dB for a 500 µm long WBG, equivalently corresponding to a backward coupling coefficient of 3.7 mm-1. These novel results pave the way for new silver-based laser-inscribed integrated photonic devices, among which the combination of Bragg gratings to form active/passive optical resonators, but also the direct inscription of WBG at the glass interface for enhanced sensing applications.
基于飞秒激光诱导的A型折射率变化,即基于特殊正磷酸盐玻璃基体中银的光化学性质,提出了一种新型波导布拉格光栅(WBG)。一阶wbg在近红外波段有报道,在可见光波段低至736nm。500µm长wbg的相对传输测量结果显示,在240 ~ 280 nm的周期内,窄带宽衰减(亚nm频谱FWHM)分别为2.29 ~ 6.25 dB。反演后向耦合系数在1.66 mm-1 ~ 2.69 mm-1范围内具有较高的数值。此外,我们报道了一个真正的3D螺旋形WBG,它显示出更强的相对衰减,对于500µm长的WBG,相对衰减为10.3 dB,相当于向后耦合系数为3.7 mm-1。这些新颖的结果为新的银基激光刻蚀集成光子器件铺平了道路,其中布拉格光栅组合形成有源/无源光学谐振器,以及在玻璃界面上直接刻蚀WBG以增强传感应用。
{"title":"Three-dimensional femtosecond laser inscription of type a-based high-efficiency first-order waveguide Bragg gratings","authors":"R. Laberdesque, Laura Loi, T. Guérineau, Alain Abou Khalil, S. Danto, T. Cardinal, L. Canioni, Y. Petit","doi":"10.3389/aot.2023.1237679","DOIUrl":"https://doi.org/10.3389/aot.2023.1237679","url":null,"abstract":"A novel type of waveguide Bragg grating (WBG) is demonstrated based on femtosecond laser-induced Type A refractive index modifications, namely based of the photochemistry of silver species in a specialty ortho-phosphate glass matrix. First-order WBGs are reported in the near-infrared and down to 736 nm in the visible. Relative transmission measurements with a 500 µm long WBGs lead to narrow-bandwidth attenuations (sub-nm spectral FWHM) from 2.29 dB to 6.25 dB for periods from 240 nm to 280 nm, respectively. The corresponding estimated backward coupling coefficients show high values from 1.66 mm-1 up to 2.69 mm-1. Additionally, we report on a true 3D helix-shaped WBG that shows an even stronger relative attenuation of 10.3 dB for a 500 µm long WBG, equivalently corresponding to a backward coupling coefficient of 3.7 mm-1. These novel results pave the way for new silver-based laser-inscribed integrated photonic devices, among which the combination of Bragg gratings to form active/passive optical resonators, but also the direct inscription of WBG at the glass interface for enhanced sensing applications.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47961548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast laser volume nanostructuring; a limitless perspective 超快激光体积纳米结构;无限的视角
IF 1.8 Q2 OPTICS Pub Date : 2023-07-11 DOI: 10.3389/aot.2023.1237524
R. Stoian
Ultrafast lasers are now unanimously recognized as processing tools capable of providing utmost precision. This becomes key in the context of material processing as precise feature scales can render a range of new characteristics to the processed materials. These features redesign their properties optically, mechanically, electrically, or from a chemical point of view. Precision is often accompanied by an increase in resolution. The advances in optical beam engineering and irradiation strategies, alongside with controlled material responses, have put in sight the opportunity to reach record small feature sizes, below 100 nm. Is there an intrinsic limit to optical fabrication? What are the new opportunities provided by laser processing on these scales? How one can make light adapt to matter and at the same time control the matter’s response under light on the smallest scales? In this article I intend to provide a brief overview into the latest developments in ultrafast laser volume nanostructuring, fundamentals and applications alike, stressing out the prospective roadmap and the new potential emerging from super-resolved ultrafast smart laser processing technologies.
超快激光器现在被一致认为是能够提供最高精度的加工工具。这在材料加工的背景下成为关键,因为精确的特征尺度可以为加工材料呈现一系列新的特征。这些特征从光学、机械、电学或化学的角度重新设计了它们的特性。精度往往伴随着分辨率的提高。光束工程和辐照策略的进步,以及材料响应的控制,使人们有机会达到100纳米以下的小特征尺寸。光学制造有内在的限制吗?这些规模的激光加工提供了哪些新的机会?如何使光适应物质,同时在最小尺度上控制物质对光的反应?在这篇文章中,我打算简要介绍超快激光体积纳米结构的最新发展,基本原理和应用,强调未来的路线图和超分辨超快智能激光加工技术的新潜力。
{"title":"Ultrafast laser volume nanostructuring; a limitless perspective","authors":"R. Stoian","doi":"10.3389/aot.2023.1237524","DOIUrl":"https://doi.org/10.3389/aot.2023.1237524","url":null,"abstract":"Ultrafast lasers are now unanimously recognized as processing tools capable of providing utmost precision. This becomes key in the context of material processing as precise feature scales can render a range of new characteristics to the processed materials. These features redesign their properties optically, mechanically, electrically, or from a chemical point of view. Precision is often accompanied by an increase in resolution. The advances in optical beam engineering and irradiation strategies, alongside with controlled material responses, have put in sight the opportunity to reach record small feature sizes, below 100 nm. Is there an intrinsic limit to optical fabrication? What are the new opportunities provided by laser processing on these scales? How one can make light adapt to matter and at the same time control the matter’s response under light on the smallest scales? In this article I intend to provide a brief overview into the latest developments in ultrafast laser volume nanostructuring, fundamentals and applications alike, stressing out the prospective roadmap and the new potential emerging from super-resolved ultrafast smart laser processing technologies.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48909714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making impact 生产的影响
IF 1.8 Q2 OPTICS Pub Date : 2022-11-07 DOI: 10.1515/aot-2022-0035
A. Thoss
{"title":"Making impact","authors":"A. Thoss","doi":"10.1515/aot-2022-0035","DOIUrl":"https://doi.org/10.1515/aot-2022-0035","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"11 1","pages":"149 - 150"},"PeriodicalIF":1.8,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42505661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Optical Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1