Xin-Jie Zhang, Jack Murdoch Moore, Gang Yan, Xiang Li
{"title":"Universal structural patterns in sparse recurrent neural networks","authors":"Xin-Jie Zhang, Jack Murdoch Moore, Gang Yan, Xiang Li","doi":"10.1038/s42005-023-01364-0","DOIUrl":null,"url":null,"abstract":"Sparse neural networks can achieve performance comparable to fully connected networks but need less energy and memory, showing great promise for deploying artificial intelligence in resource-limited devices. While significant progress has been made in recent years in developing approaches to sparsify neural networks, artificial neural networks are notorious as black boxes, and it remains an open question whether well-performing neural networks have common structural features. Here, we analyze the evolution of recurrent neural networks (RNNs) trained by different sparsification strategies and for different tasks, and explore the topological regularities of these sparsified networks. We find that the optimized sparse topologies share a universal pattern of signed motifs, RNNs evolve towards structurally balanced configurations during sparsification, and structural balance can improve the performance of sparse RNNs in a variety of tasks. Such structural balance patterns also emerge in other state-of-the-art models, including neural ordinary differential equation networks and continuous-time RNNs. Taken together, our findings not only reveal universal structural features accompanying optimized network sparsification but also offer an avenue for optimal architecture searching. Deep neural networks have shown remarkable success in application areas across physical sciences and engineering science and finding such networks that can work efficiently with less connections (weight parameters) without sacrificing performance is thus of great interest. In this work the authors show that a large number of such efficient recurrent neural networks display certain connectivity patterns in their structure.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-023-01364-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-023-01364-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse neural networks can achieve performance comparable to fully connected networks but need less energy and memory, showing great promise for deploying artificial intelligence in resource-limited devices. While significant progress has been made in recent years in developing approaches to sparsify neural networks, artificial neural networks are notorious as black boxes, and it remains an open question whether well-performing neural networks have common structural features. Here, we analyze the evolution of recurrent neural networks (RNNs) trained by different sparsification strategies and for different tasks, and explore the topological regularities of these sparsified networks. We find that the optimized sparse topologies share a universal pattern of signed motifs, RNNs evolve towards structurally balanced configurations during sparsification, and structural balance can improve the performance of sparse RNNs in a variety of tasks. Such structural balance patterns also emerge in other state-of-the-art models, including neural ordinary differential equation networks and continuous-time RNNs. Taken together, our findings not only reveal universal structural features accompanying optimized network sparsification but also offer an avenue for optimal architecture searching. Deep neural networks have shown remarkable success in application areas across physical sciences and engineering science and finding such networks that can work efficiently with less connections (weight parameters) without sacrificing performance is thus of great interest. In this work the authors show that a large number of such efficient recurrent neural networks display certain connectivity patterns in their structure.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.