Maciej Patelka, Shosuke Ikeda, K. Sasaki, Hiroki Myodo, Nortisuka Mizumura
{"title":"Development of High Thermally Conductive Die Attach for TIM Applications","authors":"Maciej Patelka, Shosuke Ikeda, K. Sasaki, Hiroki Myodo, Nortisuka Mizumura","doi":"10.4071/2380-4505-2019.1.000312","DOIUrl":null,"url":null,"abstract":"\n High-power semiconductor applications require a thermal interface die attach material with high thermal conductivity to efficiently release the heat generated from these devices. Current thermal interface material solutions such as thermal grease, thermal pads, and silicones have been industry standards, however may fall short in performance for high-temperature or high-power applications. This article focuses on development of a cutting-edge die attach solution for thermal interface management, focusing on fusion-type epoxy-based Ag adhesive with an extremely low storage modulus and the thermal conductivity reaching up to 30 W/mK, and also very low-modulus, low-temperature pressureless sintering silver die attach with a thermal conductivity of 70 W/mK.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2019.1.000312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
High-power semiconductor applications require a thermal interface die attach material with high thermal conductivity to efficiently release the heat generated from these devices. Current thermal interface material solutions such as thermal grease, thermal pads, and silicones have been industry standards, however may fall short in performance for high-temperature or high-power applications. This article focuses on development of a cutting-edge die attach solution for thermal interface management, focusing on fusion-type epoxy-based Ag adhesive with an extremely low storage modulus and the thermal conductivity reaching up to 30 W/mK, and also very low-modulus, low-temperature pressureless sintering silver die attach with a thermal conductivity of 70 W/mK.
期刊介绍:
The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.