B. Vogel‐Heuser, J. A. Reif, Jan-H. Passoth, Christoph Huber, F. Brodbeck, Sabine Maasen, U. Lindemann, Dominik Hujo
{"title":"BPMN++ to support managing organisational, multiteam and systems engineering aspects in cyber physical production systems design and operation","authors":"B. Vogel‐Heuser, J. A. Reif, Jan-H. Passoth, Christoph Huber, F. Brodbeck, Sabine Maasen, U. Lindemann, Dominik Hujo","doi":"10.1017/dsj.2021.29","DOIUrl":null,"url":null,"abstract":"Abstract Interdisciplinary engineering of cyber physical production systems (CPPS) are often subject to delay, cost overrun and quality problems or may even fail due to the lack of efficient information exchange between multiple interdisciplinary teams working in complex networks within and across companies. We propose a direct integration of multiteam and organisational aspects into the graphical notation of the systems engineering workflow. BPMN++, with eight new notational elements and two subdiagrams, enables the modelling of the required cooperation aspects. BPMN++ provides an improved overview, uniform notation, more compact presentation and easier modifiability from an engineering point of view. We also included a first set of empirical studies and historical qualitative and quantitative data in addition to subjective expert-based ratings to increase validity. The use case introduced to explain the procedure and the notation is derived from surveys in plant manufacturing focussing on the start-up phase and decision support at site. This, in particular, is one of the most complex and critical phases with potentially high economic impact. For evaluation purposes, we compare two alternative solutions for a short-term management decision in the start-up phase of CPPS using the BPMN++ approach.","PeriodicalId":54146,"journal":{"name":"Design Science","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dsj.2021.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Interdisciplinary engineering of cyber physical production systems (CPPS) are often subject to delay, cost overrun and quality problems or may even fail due to the lack of efficient information exchange between multiple interdisciplinary teams working in complex networks within and across companies. We propose a direct integration of multiteam and organisational aspects into the graphical notation of the systems engineering workflow. BPMN++, with eight new notational elements and two subdiagrams, enables the modelling of the required cooperation aspects. BPMN++ provides an improved overview, uniform notation, more compact presentation and easier modifiability from an engineering point of view. We also included a first set of empirical studies and historical qualitative and quantitative data in addition to subjective expert-based ratings to increase validity. The use case introduced to explain the procedure and the notation is derived from surveys in plant manufacturing focussing on the start-up phase and decision support at site. This, in particular, is one of the most complex and critical phases with potentially high economic impact. For evaluation purposes, we compare two alternative solutions for a short-term management decision in the start-up phase of CPPS using the BPMN++ approach.