{"title":"Development of cellulosic-based hemostatic dressing with antibacterial activity","authors":"Mostafa Goodarz, Amir Behzadnia, Hassan Mohammadi","doi":"10.1186/s40691-022-00305-9","DOIUrl":null,"url":null,"abstract":"<div><p>A cotton-based hemostatic dressing featuring antibacterial properties was developed with the potential of being used in traffic accidents to control hemorrhage. Cotton gauze was oxidized initially in an acidic medium and then coated by PVA nanofibers and/or PVA nanofibers loaded with Ciprofloxacin. Fabricated dressings were characterized by FTIR analysis and SEM images. The FTIR spectrum showed the existence of carboxyl groups on the oxidized cotton gauze's surface. The carboxyl groups content was estimated to be 17.3 ± 0.3 for the oxidized sample with a mixture of nitric acid and phosphoric acid for 24 h (OCF-Mixed acid24). Moreover, the effect of the exposure duration of cotton gauze in the acidic medium on the blood coagulation activity was assessed. It was observed that the OCF-Mixed acid24 sample exhibited an agreeable hemostatic activity (BCIs = 10). The antibacterial activity against <i>E. coli</i> and<i> S. aureus</i> bacteria was also captured for the coated cotton gauze by the PVA nanofibers loaded with Ciprofloxacin.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-022-00305-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-022-00305-9","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
A cotton-based hemostatic dressing featuring antibacterial properties was developed with the potential of being used in traffic accidents to control hemorrhage. Cotton gauze was oxidized initially in an acidic medium and then coated by PVA nanofibers and/or PVA nanofibers loaded with Ciprofloxacin. Fabricated dressings were characterized by FTIR analysis and SEM images. The FTIR spectrum showed the existence of carboxyl groups on the oxidized cotton gauze's surface. The carboxyl groups content was estimated to be 17.3 ± 0.3 for the oxidized sample with a mixture of nitric acid and phosphoric acid for 24 h (OCF-Mixed acid24). Moreover, the effect of the exposure duration of cotton gauze in the acidic medium on the blood coagulation activity was assessed. It was observed that the OCF-Mixed acid24 sample exhibited an agreeable hemostatic activity (BCIs = 10). The antibacterial activity against E. coli and S. aureus bacteria was also captured for the coated cotton gauze by the PVA nanofibers loaded with Ciprofloxacin.
期刊介绍:
Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor.
The scope of the journal includes the following four technical research divisions:
Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles
Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing
Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion
Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.