Selective CO_2 deoxygenation to CO in chemically looped reverse water–gas shift using iron-based oxygen carrier

IF 3.3 Q3 ENERGY & FUELS MRS Energy & Sustainability Pub Date : 2022-07-28 DOI:10.1557/s43581-022-00039-7
Wei‐Ze Hung, Zhi Xuan Law, De-Hao Tsai, Bin Chen, Chao‐Huang Chen, H. Hsu, Y. Pan
{"title":"Selective CO_2 deoxygenation to CO in chemically looped reverse water–gas shift using iron-based oxygen carrier","authors":"Wei‐Ze Hung, Zhi Xuan Law, De-Hao Tsai, Bin Chen, Chao‐Huang Chen, H. Hsu, Y. Pan","doi":"10.1557/s43581-022-00039-7","DOIUrl":null,"url":null,"abstract":"Chemical-looped reverse water–gas shift reaction was investigated using transition metal/metal oxides as oxygen carriers. Iron is identified as the only promising oxygen carrier that shows compelling CO _ 2 splitting reactivity. A chemically looped reverse water–gas shift reaction was developed using an iron-based oxygen carrier. Compared with conventional catalytic conversion processes, the chemical looping method has the advantage of high selectivity and cheap materials cost due to the separation of CO_2 splitting and H_2 oxidation half-reactions that are enabled by earth-abundant transition metal oxygen carriers. However, for such process to be economically attractive, the operation temperature should ideally be low enough such that low-grade industrial waste heat can be utilized. In other words, the reactivity of oxygen carriers toward the aforementioned half-reactions is most critical. To address the materials challenge, four transition metal-based oxygen carriers, i.e., iron, nickel, manganese, and copper, are studied using temperature-programmed techniques under H_2 and CO_2. Iron is identified to be the only oxygen carrier reactive toward CO_2 splitting and capable of completing the redox cycle at 450 °C with 100% reverse water–gas shift selectivity. Although the thermal stability of the iron oxygen carriers shows room for improvement, our work demonstrates the great potential of a scalable and economically viable route for CO_2 conversion that is compatible with current industrial processes. Graphical abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-022-00039-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Chemical-looped reverse water–gas shift reaction was investigated using transition metal/metal oxides as oxygen carriers. Iron is identified as the only promising oxygen carrier that shows compelling CO _ 2 splitting reactivity. A chemically looped reverse water–gas shift reaction was developed using an iron-based oxygen carrier. Compared with conventional catalytic conversion processes, the chemical looping method has the advantage of high selectivity and cheap materials cost due to the separation of CO_2 splitting and H_2 oxidation half-reactions that are enabled by earth-abundant transition metal oxygen carriers. However, for such process to be economically attractive, the operation temperature should ideally be low enough such that low-grade industrial waste heat can be utilized. In other words, the reactivity of oxygen carriers toward the aforementioned half-reactions is most critical. To address the materials challenge, four transition metal-based oxygen carriers, i.e., iron, nickel, manganese, and copper, are studied using temperature-programmed techniques under H_2 and CO_2. Iron is identified to be the only oxygen carrier reactive toward CO_2 splitting and capable of completing the redox cycle at 450 °C with 100% reverse water–gas shift selectivity. Although the thermal stability of the iron oxygen carriers shows room for improvement, our work demonstrates the great potential of a scalable and economically viable route for CO_2 conversion that is compatible with current industrial processes. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁基氧载体化学循环反水气变换中CO_2选择性脱氧为CO
以过渡金属/金属氧化物为氧载体,研究了化学环式逆水煤气变换反应。铁被认为是唯一有前途的氧载体,它显示出令人信服的CO2裂解反应性。使用铁基氧载体开发了一种化学环式逆水煤气变换反应。与传统的催化转化工艺相比,化学循环法具有选择性高、材料成本低廉的优点,因为富含地球的过渡金属氧载体能够分离CO_ 2裂解和H_2氧化的半反应。然而,为了使这种工艺在经济上具有吸引力,理想情况下操作温度应该足够低,从而可以利用低品位的工业废热。换句话说,氧载体对上述半反应的反应性是最关键的。为了应对材料挑战,在H_2和CO_ 2条件下,采用程序升温技术研究了四种过渡金属基氧载体,即铁、镍、锰和铜。铁被认为是唯一对CO_ 2分解有反应的氧载体,并且能够在450°C下以100%的反向水煤气变换选择性完成氧化还原循环。尽管铁氧载体的热稳定性有改进的空间,但我们的工作证明了一种与当前工业工艺兼容的可扩展且经济可行的CO_ 2转化路线的巨大潜力。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
期刊最新文献
MXenes vs MBenes: Demystifying the materials of tomorrow’s carbon capture revolution Materials scarcity during the clean energy transition: Myths, challenges, and opportunities Carbon footprint inventory using life cycle energy analysis Advanced hybrid combustion systems as a part of efforts to achieve carbon neutrality of the vehicles Assessment of the penetration impact of renewable-rich electrical grids: The Jordanian grid as a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1