Linking Twitter Sentiment Knowledge with Infrastructure Development

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2018-12-31 DOI:10.11113/MATEMATIKA.V34.N3.1142
Zakya Reyhana, K. Fithriasari, M. Atok, Nur Iriawan
{"title":"Linking Twitter Sentiment Knowledge with Infrastructure Development","authors":"Zakya Reyhana, K. Fithriasari, M. Atok, Nur Iriawan","doi":"10.11113/MATEMATIKA.V34.N3.1142","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is related to the automatic extraction of positive or negative opinions from the text. It is a special text mining application. It is important to classify implicit contents from citizen’s tweet using sentiment analysis. This research aimed to find out the opinion of infrastructure that sustained urban development in Surabaya, Indonesia’s second largest city. The procedures of text mining analysis were the data undergoes some preprocessing first, such as removing the link, retweet (RT), username, punctuation, digits, stopwords, case folding, and tokenizing. Then, the opinion was classified into positive and negative comments. Classification methods used in this research were support vector machine (SVM) and neural network (NN). The result of this research showed that NN classification method was better than SVM.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N3.1142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Sentiment analysis is related to the automatic extraction of positive or negative opinions from the text. It is a special text mining application. It is important to classify implicit contents from citizen’s tweet using sentiment analysis. This research aimed to find out the opinion of infrastructure that sustained urban development in Surabaya, Indonesia’s second largest city. The procedures of text mining analysis were the data undergoes some preprocessing first, such as removing the link, retweet (RT), username, punctuation, digits, stopwords, case folding, and tokenizing. Then, the opinion was classified into positive and negative comments. Classification methods used in this research were support vector machine (SVM) and neural network (NN). The result of this research showed that NN classification method was better than SVM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将Twitter情感知识与基础设施开发联系起来
情绪分析与从文本中自动提取积极或消极的观点有关。它是一个特殊的文本挖掘应用程序。使用情感分析对公民推文中的隐含内容进行分类是很重要的。本研究旨在了解印尼第二大城市泗水的基础设施支撑城市发展的观点。文本挖掘分析的过程是先对数据进行一些预处理,如删除链接、转发(RT)、用户名、标点符号、数字、停止语、大小写折叠和标记。然后,将该意见分为正面评论和负面评论。本研究中使用的分类方法有支持向量机(SVM)和神经网络(NN)。研究结果表明,神经网络分类方法优于支持向量机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1