Shaghayegh Abolmakarem, F. Abdi, K. Khalili-Damghani, H. Didehkhani
{"title":"Futuristic portfolio optimization problem: wavelet based long short-term memory","authors":"Shaghayegh Abolmakarem, F. Abdi, K. Khalili-Damghani, H. Didehkhani","doi":"10.1108/jm2-09-2022-0232","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to propose an improved version of portfolio optimization model through the prediction of the future behavior of stock returns using a combined wavelet-based long short-term memory (LSTM).\n\n\nDesign/methodology/approach\nFirst, data are gathered and divided into two parts, namely, “past data” and “real data.” In the second stage, the wavelet transform is proposed to decompose the stock closing price time series into a set of coefficients. The derived coefficients are taken as an input to the LSTM model to predict the stock closing price time series and the “future data” is created. In the third stage, the mean-variance portfolio optimization problem (MVPOP) has iteratively been run using the “past,” “future” and “real” data sets. The epsilon-constraint method is adapted to generate the Pareto front for all three runes of MVPOP.\n\n\nFindings\nThe real daily stock closing price time series of six stocks from the FTSE 100 between January 1, 2000, and December 30, 2020, is used to check the applicability and efficacy of the proposed approach. The comparisons of “future,” “past” and “real” Pareto fronts showed that the “future” Pareto front is closer to the “real” Pareto front. This demonstrates the efficacy and applicability of proposed approach.\n\n\nOriginality/value\nMost of the classic Markowitz-based portfolio optimization models used past information to estimate the associated parameters of the stocks. This study revealed that the prediction of the future behavior of stock returns using a combined wavelet-based LSTM improved the performance of the portfolio.\n","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-09-2022-0232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to propose an improved version of portfolio optimization model through the prediction of the future behavior of stock returns using a combined wavelet-based long short-term memory (LSTM).
Design/methodology/approach
First, data are gathered and divided into two parts, namely, “past data” and “real data.” In the second stage, the wavelet transform is proposed to decompose the stock closing price time series into a set of coefficients. The derived coefficients are taken as an input to the LSTM model to predict the stock closing price time series and the “future data” is created. In the third stage, the mean-variance portfolio optimization problem (MVPOP) has iteratively been run using the “past,” “future” and “real” data sets. The epsilon-constraint method is adapted to generate the Pareto front for all three runes of MVPOP.
Findings
The real daily stock closing price time series of six stocks from the FTSE 100 between January 1, 2000, and December 30, 2020, is used to check the applicability and efficacy of the proposed approach. The comparisons of “future,” “past” and “real” Pareto fronts showed that the “future” Pareto front is closer to the “real” Pareto front. This demonstrates the efficacy and applicability of proposed approach.
Originality/value
Most of the classic Markowitz-based portfolio optimization models used past information to estimate the associated parameters of the stocks. This study revealed that the prediction of the future behavior of stock returns using a combined wavelet-based LSTM improved the performance of the portfolio.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.