Using ontologies for life science text-based resource organization

Giulia Panzarella , Pierangelo Veltri , Stefano Alcaro
{"title":"Using ontologies for life science text-based resource organization","authors":"Giulia Panzarella ,&nbsp;Pierangelo Veltri ,&nbsp;Stefano Alcaro","doi":"10.1016/j.ailsci.2023.100059","DOIUrl":null,"url":null,"abstract":"<div><p>Ontologies are used to support access to a multitude of databases that cover domains relevant information. Heterogeneity and different semantics can be accessed by using structured texts and descriptions in a hierarchical concept definition. We are interested in Life Sciences (LS) related ontologies including components taken from molecular biology, bioinformatics, physics, chemistry, medicine and other related areas. An Ontology comprises: (i) term connections, (ii) the identification of core concepts, (iii) data management, (iv) knowledge classification and integration to collect key information. An ontology may be very useful in navigating through LS terms. This paper explores some available biomedical ontologies and frameworks. It describes the most common ontology development environments (ODE): Protégé, Topbraid Composer, Ontostudio, Fluent Editor, VocBench, Swoop and Obo-edit, to create ontologies from textual scientific resources for LS plans. It also compares ontology methodologies in terms of Usability, Scalability, Stability, Integration, Documentation and Originality.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266731852300003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ontologies are used to support access to a multitude of databases that cover domains relevant information. Heterogeneity and different semantics can be accessed by using structured texts and descriptions in a hierarchical concept definition. We are interested in Life Sciences (LS) related ontologies including components taken from molecular biology, bioinformatics, physics, chemistry, medicine and other related areas. An Ontology comprises: (i) term connections, (ii) the identification of core concepts, (iii) data management, (iv) knowledge classification and integration to collect key information. An ontology may be very useful in navigating through LS terms. This paper explores some available biomedical ontologies and frameworks. It describes the most common ontology development environments (ODE): Protégé, Topbraid Composer, Ontostudio, Fluent Editor, VocBench, Swoop and Obo-edit, to create ontologies from textual scientific resources for LS plans. It also compares ontology methodologies in terms of Usability, Scalability, Stability, Integration, Documentation and Originality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本体论在生命科学中的应用基于文本的资源组织
本体用于支持对涵盖领域相关信息的大量数据库的访问。通过在分层概念定义中使用结构化文本和描述,可以访问异构性和不同的语义。我们对生命科学(LS)相关的本体感兴趣,包括来自分子生物学,生物信息学,物理学,化学,医学和其他相关领域的组件。本体包括:(i)术语连接,(ii)核心概念的识别,(iii)数据管理,(iv)知识分类和集成以收集关键信息。本体在导航LS术语时可能非常有用。本文探讨了一些现有的生物医学本体和框架。它描述了最常见的本体开发环境(ODE): prot、Topbraid Composer、Ontostudio、Fluent Editor、VocBench、Swoop和Obo-edit,用于从文本科学资源中为LS计划创建本体。本文还从可用性、可扩展性、稳定性、集成、文档化和原创性等方面对本体方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
期刊最新文献
Actively protective combinatorial analysis: A scalable novel method for detecting variants that contribute to reduced disease prevalence in high-risk individuals Explainable artificial intelligence for targeted protein degradation predictions The path to adoption of open source AI for drug discovery in Africa Editorial Board Rethinking the 'best method' paradigm: The effectiveness of hybrid and multidisciplinary approaches in chemoinformatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1