{"title":"Weather Window Analysis in Operations and Maintenance Policies for Offshore Floating Multi-Purpose Platforms","authors":"Taemin Heo, Ding-Peng Liu, L. Manuel","doi":"10.1115/1.4056344","DOIUrl":null,"url":null,"abstract":"\n In an emerging “blue economy,” the use of large multipurpose floating platforms in the open ocean is being considered. Such platforms could possibly support a diversified range of commercial activities including energy generation, aquaculture, seabed mining, transport, tourism, and sea-based laboratories. A Markov Decision Process (MDP) framework is proposed to deal with operations and maintenance issues that are inevitable; challenges arise from the complex stochastic weather conditions that need to be accounted for. Using data as well as contrasting synthetic simulations of relevant weather variables, we demonstrate the robustness/versatility of the MDP model. Two case studies-one involving constant and another involving time-dependent downtime costs-are conducted to demonstrate how the proposed MDP framework incorporates weather patterns from available data and can offer optimal policies for distinct metocean conditions (i.e., temporal variations in the weather). A realistic example that illustrates the implementation of the proposed framework for multiple O&M issues involving salmon net pens and wave energy converters demonstrates how our optimal policies can minimize O&M costs and maximize crew safety almost as if the true future were known for scheduling.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056344","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In an emerging “blue economy,” the use of large multipurpose floating platforms in the open ocean is being considered. Such platforms could possibly support a diversified range of commercial activities including energy generation, aquaculture, seabed mining, transport, tourism, and sea-based laboratories. A Markov Decision Process (MDP) framework is proposed to deal with operations and maintenance issues that are inevitable; challenges arise from the complex stochastic weather conditions that need to be accounted for. Using data as well as contrasting synthetic simulations of relevant weather variables, we demonstrate the robustness/versatility of the MDP model. Two case studies-one involving constant and another involving time-dependent downtime costs-are conducted to demonstrate how the proposed MDP framework incorporates weather patterns from available data and can offer optimal policies for distinct metocean conditions (i.e., temporal variations in the weather). A realistic example that illustrates the implementation of the proposed framework for multiple O&M issues involving salmon net pens and wave energy converters demonstrates how our optimal policies can minimize O&M costs and maximize crew safety almost as if the true future were known for scheduling.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.