Jiannan Zhu, Vladimir Mahalec, Chen Fan, Minglei Yang, Feng Qian
{"title":"Multiple input self-organizing-map ResNet model for optimization of petroleum refinery conversion units","authors":"Jiannan Zhu, Vladimir Mahalec, Chen Fan, Minglei Yang, Feng Qian","doi":"10.1007/s11705-022-2269-5","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces a deep-learning network, i.e., multi-input self-organizing-map ResNet (MISR), for modeling refining units comprised of two reactors and a separation train. The model is comprised of self-organizing-map and the neural network parts. The self-organizing-map part maps the input data into multiple two-dimensional planes and sends them to the neural network part. In the neural network part, residual blocks enhance the convergence and accuracy, ensuring that the structure will not be overfitted easily. Development of the MISR model of hydrocracking unit also benefits from the utilization of prior knowledge of the importance of the input variables for predicting properties of the products. The results show that the proposed MISR structure predicts more accurately the product yields and properties than the previously introduced self-organizing-map convolutional neural network model, thus leading to more accurate optimization of the hydrocracker operation. Moreover, the MISR model has smoother error convergence than the previous model. Optimal operating conditions have been determined via multi-round-particle-swarm and differential evolution algorithms. Numerical experiments show that the MISR model is suitable for modeling nonlinear conversion units which are often encountered in refining and petrochemical plants.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 6","pages":"759 - 771"},"PeriodicalIF":4.3000,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-022-2269-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This work introduces a deep-learning network, i.e., multi-input self-organizing-map ResNet (MISR), for modeling refining units comprised of two reactors and a separation train. The model is comprised of self-organizing-map and the neural network parts. The self-organizing-map part maps the input data into multiple two-dimensional planes and sends them to the neural network part. In the neural network part, residual blocks enhance the convergence and accuracy, ensuring that the structure will not be overfitted easily. Development of the MISR model of hydrocracking unit also benefits from the utilization of prior knowledge of the importance of the input variables for predicting properties of the products. The results show that the proposed MISR structure predicts more accurately the product yields and properties than the previously introduced self-organizing-map convolutional neural network model, thus leading to more accurate optimization of the hydrocracker operation. Moreover, the MISR model has smoother error convergence than the previous model. Optimal operating conditions have been determined via multi-round-particle-swarm and differential evolution algorithms. Numerical experiments show that the MISR model is suitable for modeling nonlinear conversion units which are often encountered in refining and petrochemical plants.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.