{"title":"Accelerated curing effects on performance of metakaolin concrete","authors":"Moulshree Dubey, S. Deo, G. Ramtekkar","doi":"10.1556/1848.2022.00558","DOIUrl":null,"url":null,"abstract":"The manufacturing of cement liberates the green-house gasses into atmosphere. To overcome this problem so many alternative materials has been invented by researchers to minimize addition of cement. The incorporation of these alternative materials as cementitious material in concrete enhances the attributes of concrete. In this scenario metakaolin gained momentum as a substitution to cement in concrete. Most of the researchers studied the performance of concrete incorporating metakaolin as cementitious material in normal curing conditions. There is a need for analysing the impact of accelerated curing on properties of concrete by incorporating metakaolin as cementitious material. The current construction industry needs high early strength for removal of form work in early ages. The accelerated curing is a method which provides high early strength. In this study, different proportions of metakaolin are added as partial alternative to cement and cured in accelerated curing tank for 3.5 h. The strength parameters test, durability test, and micro-structural parameter tests are performed on these samples. Further, micro-structural analysis has been carried out using SEM, and EDX tests. Results depicted the incorporation of 15% of metakaolin as substitute to cement amplifies the overall performance of concrete in accelerated curing regime.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2022.00558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The manufacturing of cement liberates the green-house gasses into atmosphere. To overcome this problem so many alternative materials has been invented by researchers to minimize addition of cement. The incorporation of these alternative materials as cementitious material in concrete enhances the attributes of concrete. In this scenario metakaolin gained momentum as a substitution to cement in concrete. Most of the researchers studied the performance of concrete incorporating metakaolin as cementitious material in normal curing conditions. There is a need for analysing the impact of accelerated curing on properties of concrete by incorporating metakaolin as cementitious material. The current construction industry needs high early strength for removal of form work in early ages. The accelerated curing is a method which provides high early strength. In this study, different proportions of metakaolin are added as partial alternative to cement and cured in accelerated curing tank for 3.5 h. The strength parameters test, durability test, and micro-structural parameter tests are performed on these samples. Further, micro-structural analysis has been carried out using SEM, and EDX tests. Results depicted the incorporation of 15% of metakaolin as substitute to cement amplifies the overall performance of concrete in accelerated curing regime.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.