{"title":"Bioconvective nanofluid flow over an exponential stretched sheet with thermophoretic particle deposition","authors":"B.C. Prasannakumara , J.K. Madhukesh , G.K. Ramesh","doi":"10.1016/j.jppr.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>The current work is being done to investigate the flow of nanofluids across a porous exponential stretching surface in the presence of a heat source/sink, thermophoretic particle deposition, and bioconvection. The collection of PDEs (partial differential equations) that represent the fluid moment is converted to a system of ODEs (ordinary differential equations) with the use of suitable similarity variables, and these equations are then numerically solved using Runge Kutta Fehlberg and the shooting approach. For different physical limitations, the numerical results are visually represented. The results show that increasing the porosity characteristics reduces velocity. The mass transfer decreases as the thermophoretic limitation increases. Increases in the porosity parameter reduce skin friction, increases in the solid volume fraction improve the rate of thermal distribution, and increases in the thermophoretic parameter increase the rate of mass transfer.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"12 2","pages":"Pages 284-296"},"PeriodicalIF":5.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X23000354","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 4
Abstract
The current work is being done to investigate the flow of nanofluids across a porous exponential stretching surface in the presence of a heat source/sink, thermophoretic particle deposition, and bioconvection. The collection of PDEs (partial differential equations) that represent the fluid moment is converted to a system of ODEs (ordinary differential equations) with the use of suitable similarity variables, and these equations are then numerically solved using Runge Kutta Fehlberg and the shooting approach. For different physical limitations, the numerical results are visually represented. The results show that increasing the porosity characteristics reduces velocity. The mass transfer decreases as the thermophoretic limitation increases. Increases in the porosity parameter reduce skin friction, increases in the solid volume fraction improve the rate of thermal distribution, and increases in the thermophoretic parameter increase the rate of mass transfer.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.