{"title":"Characterization of the chemical fungicides-responsive and bacterial pathogen-preventing Bacillus licheniformis in rice spikelet","authors":"Chengfang Zhan, Mengchen Wu, Hongda Fang, Xiaoyu Liu, Jiuyue Pan, Xiaoyan Fan, Mengcen Wang, Haruna Matsumoto","doi":"10.1093/fqsafe/fyad005","DOIUrl":null,"url":null,"abstract":"\n Seed borne bacterial pathogens cause severe yield loss and biotoxin contamination in rice, leading to an increasing concern on the global food supply and environmental safety. Plant native microbes play an important role in defending against diseases, but their actions are often influenced by the chemical fungicides applied in the field. Here, Bacillus licheniformis mmj was isolated from rice spikelet, which uniquely showed not only the fungicide-responsiveness but also the broad-spectrum antimicrobial activity against major rice bacterial pathogens including Xanthomonas oryzae pv. oryzae, Burkholderia plantarii and Burkholderia glumae. To understand the hallmark underlying the environmental adaption and antimicrobial activity of B. licheniformis mmj, the genome sequence was determined by SMRT and subjected to bioinformatics analysis. Genome sequence analysis enabled to identification of a set of the antimicrobial-resistance and antibacterial activity genes together with an array of harsh environment-adaptive genes. Moreover, B. licheniformis mmj metabolites were analyzed with gas chromatography coupled to triple quadrupole mass spectrometry, and the volatile components that were linked with the antimicrobial activity were preliminarily profiled. Collectively, the present findings reveal the genomic and metabolic landscapes underlying the fungicide-responsive B. licheniformis, which offers a new opportunity to design harsh environment-adaptive biopesticides to cope with the prevalent bacterial phytopathogens.","PeriodicalId":12427,"journal":{"name":"Food Quality and Safety","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Quality and Safety","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/fqsafe/fyad005","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Seed borne bacterial pathogens cause severe yield loss and biotoxin contamination in rice, leading to an increasing concern on the global food supply and environmental safety. Plant native microbes play an important role in defending against diseases, but their actions are often influenced by the chemical fungicides applied in the field. Here, Bacillus licheniformis mmj was isolated from rice spikelet, which uniquely showed not only the fungicide-responsiveness but also the broad-spectrum antimicrobial activity against major rice bacterial pathogens including Xanthomonas oryzae pv. oryzae, Burkholderia plantarii and Burkholderia glumae. To understand the hallmark underlying the environmental adaption and antimicrobial activity of B. licheniformis mmj, the genome sequence was determined by SMRT and subjected to bioinformatics analysis. Genome sequence analysis enabled to identification of a set of the antimicrobial-resistance and antibacterial activity genes together with an array of harsh environment-adaptive genes. Moreover, B. licheniformis mmj metabolites were analyzed with gas chromatography coupled to triple quadrupole mass spectrometry, and the volatile components that were linked with the antimicrobial activity were preliminarily profiled. Collectively, the present findings reveal the genomic and metabolic landscapes underlying the fungicide-responsive B. licheniformis, which offers a new opportunity to design harsh environment-adaptive biopesticides to cope with the prevalent bacterial phytopathogens.
期刊介绍:
Food quality and safety are the main targets of investigation in food production. Therefore, reliable paths to detect, identify, quantify, characterize and monitor quality and safety issues occurring in food are of great interest.
Food Quality and Safety is an open access, international, peer-reviewed journal providing a platform to highlight emerging and innovative science and technology in the agro-food field, publishing up-to-date research in the areas of food quality and safety, food nutrition and human health. It promotes food and health equity which will consequently promote public health and combat diseases.
The journal is an effective channel of communication between food scientists, nutritionists, public health professionals, food producers, food marketers, policy makers, governmental and non-governmental agencies, and others concerned with the food safety, nutrition and public health dimensions.
The journal accepts original research articles, review papers, technical reports, case studies, conference reports, and book reviews articles.