Kathryn R Marusich, N. Harel, Matthew D. Johnson, Paul Rothweiler, A. Erdman
{"title":"Trajectory Planning Software for Deep Brain Stimulation Driven by Patient Specific Data","authors":"Kathryn R Marusich, N. Harel, Matthew D. Johnson, Paul Rothweiler, A. Erdman","doi":"10.1115/1.4063142","DOIUrl":null,"url":null,"abstract":"\n Deep brain stimulation (DBS) is a treatment for several neurological disorders including Parkinson's Disease, Essential tremor, and Epilepsy. The neurosurgical procedure involves implanting a lead of electrodes to a deep brain target and thereafter electrically stimulating that target to suppress symptoms. To reduce the probability of intracranial bleeding during implantation, neurosurgeons carefully plan out a patient-specific lead trajectory that avoids passing the lead through regions with major blood vessels. This process can be tedious, and there is a need to provide neurosurgeons with a more efficient and quantitative means to identify major blood vessels on a patient specific basis. Here, we developed a modular graphical user interface (GUI) containing anatomically segmented digital reconstructions of patient vasculature, cortex, and deep brain target anatomy from preoperative high-field (3T and 7T) MRI. The system prompts users to identify the deep brain target, and then algorithmically calculates a log-scale blood vessel density along the length of potential lead trajectories that pivot around the deep brain target. Heatmaps highlighting regions with low blood vessel density were calculated for cortical and subcortical vasculature models. The modeling framework enabled users to further interact with the models by panning, rotating, zooming, showing, or hiding the various anatomical reconstructions and heatmaps. Providing surgeons with quantitative, patient specific vasculature data has potential to further reduce the likelihood of hemorrhage events during microelectrode mapping and DBS lead implantation.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063142","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep brain stimulation (DBS) is a treatment for several neurological disorders including Parkinson's Disease, Essential tremor, and Epilepsy. The neurosurgical procedure involves implanting a lead of electrodes to a deep brain target and thereafter electrically stimulating that target to suppress symptoms. To reduce the probability of intracranial bleeding during implantation, neurosurgeons carefully plan out a patient-specific lead trajectory that avoids passing the lead through regions with major blood vessels. This process can be tedious, and there is a need to provide neurosurgeons with a more efficient and quantitative means to identify major blood vessels on a patient specific basis. Here, we developed a modular graphical user interface (GUI) containing anatomically segmented digital reconstructions of patient vasculature, cortex, and deep brain target anatomy from preoperative high-field (3T and 7T) MRI. The system prompts users to identify the deep brain target, and then algorithmically calculates a log-scale blood vessel density along the length of potential lead trajectories that pivot around the deep brain target. Heatmaps highlighting regions with low blood vessel density were calculated for cortical and subcortical vasculature models. The modeling framework enabled users to further interact with the models by panning, rotating, zooming, showing, or hiding the various anatomical reconstructions and heatmaps. Providing surgeons with quantitative, patient specific vasculature data has potential to further reduce the likelihood of hemorrhage events during microelectrode mapping and DBS lead implantation.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.