R. Hantoro, E. Septyaningrum, Yusuf Rifqi Hudaya, I. Utama
{"title":"STABILITY ANALYSIS FOR TRIMARAN PONTOON ARRAY IN WAVE ENERGY CONVERTER – PENDULUM SYSTEM (WEC - PS)","authors":"R. Hantoro, E. Septyaningrum, Yusuf Rifqi Hudaya, I. Utama","doi":"10.21278/brod73304","DOIUrl":null,"url":null,"abstract":"Ocean waves are a renewable energy source with abundant reserves in Indonesia. With the vast waters of Indonesia, the development of a sea wave power plant needs to be developed. This research focuses on the development of easy-operated and maintained ocean wave converter–pendulum system (OWC – PS). The numerical simulation and experimental analysis were conducted to obtain the relation between the motion response of the pontoon array and its pendulum. The pontoon used is the trimaran type, which consists of a cylindrical pontoon as the main hull and two outriggers on its side. This study analyses the most stable array arrangement that produces maximum pitching motion and pendulum deviation. The simulation results show that the largest pitching value is in array 1, i.e., 27.91° for pontoon 1 and 38.92° for pontoon 2, which results in a maximum pendulum deviation of 100 ° for pendulums 1 and 56.2 ° for pendulum 2 over a wave period of 9 seconds. The backward motion of the pendulum in both array configurations tends to have a greater deviation than that of the forward motion. The pendulums of array 1 have different motion characteristics, represented by different deviation values in both pendulums. This phenomenon does not occur in array 2, since both pendulums in array 2 have the same deviation (with only a small discrepancy).","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73304","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 4
Abstract
Ocean waves are a renewable energy source with abundant reserves in Indonesia. With the vast waters of Indonesia, the development of a sea wave power plant needs to be developed. This research focuses on the development of easy-operated and maintained ocean wave converter–pendulum system (OWC – PS). The numerical simulation and experimental analysis were conducted to obtain the relation between the motion response of the pontoon array and its pendulum. The pontoon used is the trimaran type, which consists of a cylindrical pontoon as the main hull and two outriggers on its side. This study analyses the most stable array arrangement that produces maximum pitching motion and pendulum deviation. The simulation results show that the largest pitching value is in array 1, i.e., 27.91° for pontoon 1 and 38.92° for pontoon 2, which results in a maximum pendulum deviation of 100 ° for pendulums 1 and 56.2 ° for pendulum 2 over a wave period of 9 seconds. The backward motion of the pendulum in both array configurations tends to have a greater deviation than that of the forward motion. The pendulums of array 1 have different motion characteristics, represented by different deviation values in both pendulums. This phenomenon does not occur in array 2, since both pendulums in array 2 have the same deviation (with only a small discrepancy).
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.