{"title":"Determining a Perturbation Factor to Design Tunable Resonant Cavities in SIW Technology","authors":"R. C. Caleffo, F. S. Correra","doi":"10.1590/2179-10742023v22i1268339","DOIUrl":null,"url":null,"abstract":"— This paper presents an effective and novel design procedure employing a novelty named as Perturbation Factor to predict the resonance frequency of resonant cavities in SIW technology perturbed by a shape perturbation. The design procedure can be applied in tunable cavities and bandpass filters with shunt reactance of symmetrical inductive window, and regarding the application technologies, rectangular waveguide resonators and resonant cavities in SIW can be employed due to the equivalence of operation between both technologies. Its straightforward application allows a frequency variation of up to 20% using only one metal post which allows the reduction of the fabrication cost and the preservation of the frequency response across the considered bandwidth. To validate the design procedure, two resonant cavities were fabricated, a rectangular resonant cavity designed to operate at 5.0 GHz and 6.0 GHz and a square resonant cavity designed to operate at 6.0 GHz and 7.2 GHz, and frequency variations of 17.74% and 21.81% were obtained for the rectangular and square cavities, respectively. Still regarding the reached results, was verified a mean error of 1.75% for the predicted resonance frequency, which validates the design procedure. The experimental results are in good agreement with the full-wave computational results and electromagnetic theory.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742023v22i1268339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
— This paper presents an effective and novel design procedure employing a novelty named as Perturbation Factor to predict the resonance frequency of resonant cavities in SIW technology perturbed by a shape perturbation. The design procedure can be applied in tunable cavities and bandpass filters with shunt reactance of symmetrical inductive window, and regarding the application technologies, rectangular waveguide resonators and resonant cavities in SIW can be employed due to the equivalence of operation between both technologies. Its straightforward application allows a frequency variation of up to 20% using only one metal post which allows the reduction of the fabrication cost and the preservation of the frequency response across the considered bandwidth. To validate the design procedure, two resonant cavities were fabricated, a rectangular resonant cavity designed to operate at 5.0 GHz and 6.0 GHz and a square resonant cavity designed to operate at 6.0 GHz and 7.2 GHz, and frequency variations of 17.74% and 21.81% were obtained for the rectangular and square cavities, respectively. Still regarding the reached results, was verified a mean error of 1.75% for the predicted resonance frequency, which validates the design procedure. The experimental results are in good agreement with the full-wave computational results and electromagnetic theory.
期刊介绍:
The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.