Determining a Perturbation Factor to Design Tunable Resonant Cavities in SIW Technology

R. C. Caleffo, F. S. Correra
{"title":"Determining a Perturbation Factor to Design Tunable Resonant Cavities in SIW Technology","authors":"R. C. Caleffo, F. S. Correra","doi":"10.1590/2179-10742023v22i1268339","DOIUrl":null,"url":null,"abstract":"— This paper presents an effective and novel design procedure employing a novelty named as Perturbation Factor to predict the resonance frequency of resonant cavities in SIW technology perturbed by a shape perturbation. The design procedure can be applied in tunable cavities and bandpass filters with shunt reactance of symmetrical inductive window, and regarding the application technologies, rectangular waveguide resonators and resonant cavities in SIW can be employed due to the equivalence of operation between both technologies. Its straightforward application allows a frequency variation of up to 20% using only one metal post which allows the reduction of the fabrication cost and the preservation of the frequency response across the considered bandwidth. To validate the design procedure, two resonant cavities were fabricated, a rectangular resonant cavity designed to operate at 5.0 GHz and 6.0 GHz and a square resonant cavity designed to operate at 6.0 GHz and 7.2 GHz, and frequency variations of 17.74% and 21.81% were obtained for the rectangular and square cavities, respectively. Still regarding the reached results, was verified a mean error of 1.75% for the predicted resonance frequency, which validates the design procedure. The experimental results are in good agreement with the full-wave computational results and electromagnetic theory.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742023v22i1268339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

— This paper presents an effective and novel design procedure employing a novelty named as Perturbation Factor to predict the resonance frequency of resonant cavities in SIW technology perturbed by a shape perturbation. The design procedure can be applied in tunable cavities and bandpass filters with shunt reactance of symmetrical inductive window, and regarding the application technologies, rectangular waveguide resonators and resonant cavities in SIW can be employed due to the equivalence of operation between both technologies. Its straightforward application allows a frequency variation of up to 20% using only one metal post which allows the reduction of the fabrication cost and the preservation of the frequency response across the considered bandwidth. To validate the design procedure, two resonant cavities were fabricated, a rectangular resonant cavity designed to operate at 5.0 GHz and 6.0 GHz and a square resonant cavity designed to operate at 6.0 GHz and 7.2 GHz, and frequency variations of 17.74% and 21.81% were obtained for the rectangular and square cavities, respectively. Still regarding the reached results, was verified a mean error of 1.75% for the predicted resonance frequency, which validates the design procedure. The experimental results are in good agreement with the full-wave computational results and electromagnetic theory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定微扰因子以设计SIW技术中的可调谐谐振腔
--本文提出了一种有效而新颖的设计方法,利用一种新的扰动因子来预测形状扰动下SIW技术中谐振腔的谐振频率。该设计程序可应用于具有对称电感窗口分流电抗的可调谐腔和带通滤波器,并且在应用技术方面,由于两种技术之间的操作等效,可以使用SIW中的矩形波导谐振器和谐振腔。它的直接应用允许仅使用一个金属柱就可以实现高达20%的频率变化,这允许降低制造成本并在所考虑的带宽上保持频率响应。为了验证设计程序,制造了两个谐振腔,一个矩形谐振腔设计为在5.0 GHz和6.0 GHz下工作,另一个方形谐振腔设计用于在6.0 GHz和7.2 GHz下工作。矩形和方形谐振腔的频率变化分别为17.74%和21.81%。仍然关于所达到的结果,验证了预测谐振频率的1.75%的平均误差,这验证了设计程序。实验结果与全波计算结果和电磁理论相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Journal of Microwaves, Optoelectronics and Electromagnetic Applications Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
32
审稿时长
24 weeks
期刊介绍: The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.
期刊最新文献
HIF1A contributes to the survival of aneuploid and mosaic pre-implantation embryos. Assessment of the Illumination and Communication Performance of a Visible Light System in an Indoor Scenario Software-Defined Radio Applied to a Shielding Effectiveness Measurement Numerical Analysis of Plasmonic Couplers based on Metallic Lens Detection of Eyebolt Faults Using a Random Forest Ensemble Model Based on Multiple High-Frequency Electromagnetic Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1