Machine learning-based prediction and interpretation of decomposition temperatures of energetic materials

IF 3.9 Q2 CHEMISTRY, MULTIDISCIPLINARY Energetic Materials Frontiers Pub Date : 2023-12-01 DOI:10.1016/j.enmf.2023.09.001
Jun-nan Wu , Si-wei Song , Xiao-lan Tian , Yi Wang , Xiu-juan Qi
{"title":"Machine learning-based prediction and interpretation of decomposition temperatures of energetic materials","authors":"Jun-nan Wu ,&nbsp;Si-wei Song ,&nbsp;Xiao-lan Tian ,&nbsp;Yi Wang ,&nbsp;Xiu-juan Qi","doi":"10.1016/j.enmf.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring the application of machine learning (ML) in energetic materials (EMs) has been a hot research topic. Accordingly, the prediction of the detonation properties of EMs using ML methods has attracted much attention. However, the predictive models for the thermal decomposition temperatures (<em>T</em><sub>d</sub>) of EMs have been scarcely reported. Furthermore, the small datasets used in these reports lead to a weak generalization ability of the predictive models. This study created a dataset containing 1022 energetic molecules with <em>T</em><sub>d</sub> values of 38–425 ​°C and determined an optimal predictive model through training. The gradient boost machine for regression (GBR) model yielded a coefficient of determination (<em>R</em><sup><em>2</em></sup>) of 0.65 and a mean absolute error (MAE) of 27.7 for the test set. This study further explored critical features, determining that the prediction accuracy of the models was significantly influenced by descriptors representing molecular bond stability (i.e., the BCUT metrics) and atomic composition (i.e., the Molecular ID). Finally, the analysis of the outlier structure indicated that the model accuracy can be further improved by incorporating features related to molecular interactions. The results of this study help gain a deep understanding of the application of ML in the prediction of EM properties, particularly in dataset construction and feature selection.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"4 4","pages":"Pages 254-261"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetic Materials Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666647223000404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring the application of machine learning (ML) in energetic materials (EMs) has been a hot research topic. Accordingly, the prediction of the detonation properties of EMs using ML methods has attracted much attention. However, the predictive models for the thermal decomposition temperatures (Td) of EMs have been scarcely reported. Furthermore, the small datasets used in these reports lead to a weak generalization ability of the predictive models. This study created a dataset containing 1022 energetic molecules with Td values of 38–425 ​°C and determined an optimal predictive model through training. The gradient boost machine for regression (GBR) model yielded a coefficient of determination (R2) of 0.65 and a mean absolute error (MAE) of 27.7 for the test set. This study further explored critical features, determining that the prediction accuracy of the models was significantly influenced by descriptors representing molecular bond stability (i.e., the BCUT metrics) and atomic composition (i.e., the Molecular ID). Finally, the analysis of the outlier structure indicated that the model accuracy can be further improved by incorporating features related to molecular interactions. The results of this study help gain a deep understanding of the application of ML in the prediction of EM properties, particularly in dataset construction and feature selection.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的含能材料分解温度预测与解释
探索机器学习(ML)在含能材料(EMs)中的应用一直是一个研究热点。因此,利用机器学习方法预测电磁爆轰特性受到了广泛的关注。然而,EMs热分解温度(Td)的预测模型鲜有报道。此外,这些报告中使用的小数据集导致预测模型的泛化能力较弱。本研究创建了包含1022个Td值为38-425°C的高能分子数据集,并通过训练确定了最优预测模型。梯度增强机回归(GBR)模型对测试集的决定系数(R2)为0.65,平均绝对误差(MAE)为27.7。本研究进一步探索了关键特征,确定了模型的预测精度受到表征分子键稳定性(即BCUT指标)和原子组成(即分子ID)的描述符的显著影响。最后,对离群结构的分析表明,加入分子相互作用的相关特征可以进一步提高模型的精度。本研究的结果有助于深入理解机器学习在EM属性预测中的应用,特别是在数据集构建和特征选择方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energetic Materials Frontiers
Energetic Materials Frontiers Materials Science-Materials Science (miscellaneous)
CiteScore
6.90
自引率
0.00%
发文量
42
审稿时长
12 weeks
期刊最新文献
Synthesis and characterization of a new cage-like energetic compound 3,7-dinitrato-9-nitro-9-azanoradamantane Amphoteric feature of 3,5-diamino-6-hydroxy-2-oxide-4-nitropyrimidone and its highly-stable energetic anionic salts Nitrogen-rich skeleton reassembled ECOFs as energetic materials with low sensitivities and good corrosion resistance Polynitro 1,2,3-triazole energetic materials with excellent properties through the combination of hydrogen-rich cation and N-amino group Two-step facile access to a novel pyrazole-based high energy density oxidizer via pentanitro-functionalization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1