{"title":"Understanding degradation of electroactive molecules in organic redox flow batteries: Decomposition analysis methods","authors":"Sikukuu khwa Museveni , Godfrey Nakitare Nambafu , Naomi Kollongei","doi":"10.1016/j.mset.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Organic redox flow batteries have attracted a lot of interests both in academics and industries. Accordingly, many organic materials and chemistries have been studied, providing a solid foundation for development of low-cost organic flow batteries. However, capacity loss/fade as a result of organic molecule decomposition/degradation is a major hindrance towards further advancement of this promising, sustainable and large-scale energy storage technology. Understanding the causes of decomposition as well as its mechanism is thus necessary to unravel this major challenge. Therefore, this perspective/views focus on highlighting the different methods that can be employed for decomposition assessment of organic molecules in flow battery systems. This will help in engineering and designing stable electroactive organic molecule to enable development of durable and long cycle life redox flow battery.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 561-566"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Organic redox flow batteries have attracted a lot of interests both in academics and industries. Accordingly, many organic materials and chemistries have been studied, providing a solid foundation for development of low-cost organic flow batteries. However, capacity loss/fade as a result of organic molecule decomposition/degradation is a major hindrance towards further advancement of this promising, sustainable and large-scale energy storage technology. Understanding the causes of decomposition as well as its mechanism is thus necessary to unravel this major challenge. Therefore, this perspective/views focus on highlighting the different methods that can be employed for decomposition assessment of organic molecules in flow battery systems. This will help in engineering and designing stable electroactive organic molecule to enable development of durable and long cycle life redox flow battery.