K. A. Mohammed, A. Ajam, A. Kareem, K. H. Salem, M. A. Alkhafaji, R. Zabibah
{"title":"Doping effect on properties of CdZnS nanoparticles","authors":"K. A. Mohammed, A. Ajam, A. Kareem, K. H. Salem, M. A. Alkhafaji, R. Zabibah","doi":"10.15251/cl.2023.201.11","DOIUrl":null,"url":null,"abstract":"In current work, Nanoparticles of cadmium zinc sulfide (CdZnS) and copper zinc sulfide (Cu:CdZnS) were synthesized through a capping-agent-free chemical co-precipitation method. This article focuses on the optical characteristics, elemental analysis, and surface morphology of CdZnS and Cu:CdZnS. this properties of prepared materials were investigated using a variety of techniques, including X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and ultraviolet–visible absorption. The results show both pure and doped CdZnS have cubic structure. The energy gap of CdZnS was equal to 3.14 eV and 3.4 eV for Cu doped CdZnS. According to the results the prepared nanoparticles are suitable for photdegradation applications.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2023.201.11","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In current work, Nanoparticles of cadmium zinc sulfide (CdZnS) and copper zinc sulfide (Cu:CdZnS) were synthesized through a capping-agent-free chemical co-precipitation method. This article focuses on the optical characteristics, elemental analysis, and surface morphology of CdZnS and Cu:CdZnS. this properties of prepared materials were investigated using a variety of techniques, including X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and ultraviolet–visible absorption. The results show both pure and doped CdZnS have cubic structure. The energy gap of CdZnS was equal to 3.14 eV and 3.4 eV for Cu doped CdZnS. According to the results the prepared nanoparticles are suitable for photdegradation applications.
期刊介绍:
Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and
appears with twelve issues per year. The journal is open to letters, short communications and breakings news
inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in
structure, properties and applications, as well as those covering special properties in nano-structured
chalcogenides are admitted.