J. Winkler, J. Mendoza, C. A. Reimann, K. Homma, Jose S. Alonso
{"title":"High fidelity modeling tools for engine liner design and screening of advanced concepts","authors":"J. Winkler, J. Mendoza, C. A. Reimann, K. Homma, Jose S. Alonso","doi":"10.1177/1475472X211023884","DOIUrl":null,"url":null,"abstract":"With aircraft engines trending toward ultra-high bypass ratios, resulting in lower fan pressure ratios, lower fan RPM, and therefore lower blade pass frequency, the aircraft engine liner design space has been dramatically altered. This result is also due to the associated reduction in both the available acoustic treatment area (axial extent) as well as thickness (liner depth). As a consequence, there is current need for novel acoustic liner technologies that are able to meet multiple physical constraints and simultaneously provide enhanced noise attenuation capabilities. In addition, recent advances in additive manufacturing have enabled the consideration of complex liner backing structures that would traditionally be limited to honeycomb cores. This paper provides an overview of engine liner modeling and a description of the key physical mechanisms, with some emphasis on the use of low to high-fidelity tools such as empirical models and commercially available software such as COMSOL, Actran, and PowerFLOW. It is shown that the higher fidelity tools are a critical enabler for the evaluation and construction of future complex liner structures. A systematic study is conducted to predict the acoustic performance of traditional single degree of freedom liners and comparisons are made to experimental data. The effects of grazing flow and bias flow are briefly addressed. Finally, a more advanced structure, a metamaterial, is modeled and the acoustic performance is discussed.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"20 1","pages":"530 - 560"},"PeriodicalIF":1.2000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X211023884","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
Abstract
With aircraft engines trending toward ultra-high bypass ratios, resulting in lower fan pressure ratios, lower fan RPM, and therefore lower blade pass frequency, the aircraft engine liner design space has been dramatically altered. This result is also due to the associated reduction in both the available acoustic treatment area (axial extent) as well as thickness (liner depth). As a consequence, there is current need for novel acoustic liner technologies that are able to meet multiple physical constraints and simultaneously provide enhanced noise attenuation capabilities. In addition, recent advances in additive manufacturing have enabled the consideration of complex liner backing structures that would traditionally be limited to honeycomb cores. This paper provides an overview of engine liner modeling and a description of the key physical mechanisms, with some emphasis on the use of low to high-fidelity tools such as empirical models and commercially available software such as COMSOL, Actran, and PowerFLOW. It is shown that the higher fidelity tools are a critical enabler for the evaluation and construction of future complex liner structures. A systematic study is conducted to predict the acoustic performance of traditional single degree of freedom liners and comparisons are made to experimental data. The effects of grazing flow and bias flow are briefly addressed. Finally, a more advanced structure, a metamaterial, is modeled and the acoustic performance is discussed.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.