Nonignorable item nonresponse in panel data

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2020-12-17 DOI:10.1080/24754269.2020.1856591
Sijing Li, J. Shao
{"title":"Nonignorable item nonresponse in panel data","authors":"Sijing Li, J. Shao","doi":"10.1080/24754269.2020.1856591","DOIUrl":null,"url":null,"abstract":"To estimate unknown population parameters based on panel data having nonignorable item nonresponse, we propose an innovative data grouping approach according to the number of observed components in the multivariate outcome when the joint distribution of and associated covariate is nonparametric and the nonresponse probability conditional on and has a parametric form. To deal with the identifiability issue, we utilise a nonresponse instrument , an auxiliary variable related to but not related to the nonresponse probability conditional on and . We apply a modified generalised method of moments to obtain estimators of the parameters in the nonresponse probability, and a generalised regression estimation to utilise covariate information for efficient estimation of population parameters. Consistency and asymptotic normality of the proposed estimators of the population parameters are established. Simulation and real data results are presented.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"58 - 71"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2020.1856591","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2020.1856591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

To estimate unknown population parameters based on panel data having nonignorable item nonresponse, we propose an innovative data grouping approach according to the number of observed components in the multivariate outcome when the joint distribution of and associated covariate is nonparametric and the nonresponse probability conditional on and has a parametric form. To deal with the identifiability issue, we utilise a nonresponse instrument , an auxiliary variable related to but not related to the nonresponse probability conditional on and . We apply a modified generalised method of moments to obtain estimators of the parameters in the nonresponse probability, and a generalised regression estimation to utilise covariate information for efficient estimation of population parameters. Consistency and asymptotic normality of the proposed estimators of the population parameters are established. Simulation and real data results are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面板数据中不可忽略的无响应项
为了基于具有不可忽略项目无响应的面板数据来估计未知的总体参数,我们提出了一种创新的数据分组方法,当和相关协变量的联合分布是非参数的,且无响应概率以参数形式为条件时,根据多变量结果中观察到的分量的数量。为了处理可识别性问题,我们使用了无响应工具,这是一个与以和为条件的无响应概率相关但不相关的辅助变量。我们应用改进的广义矩方法来获得无响应概率中参数的估计量,并应用广义回归估计来利用协变量信息来有效估计总体参数。建立了种群参数估计量的一致性和渐近正态性。给出了仿真和实际数据结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1