{"title":"Polyhydroxyalkanoate (PHA) Bio-polyesters – Circular Materials for Sustainable Development and Growth","authors":"M. Koller, A. Mukherjee","doi":"10.15255/cabeq.2022.2124","DOIUrl":null,"url":null,"abstract":"Achieving circularity in materials requires fundamental changes in the polymers we use today and the way they are produced. Functional polymeric materials from renewable feedstocks that do not conflict with food and animal feed, and their renewal through biodegradation under diverse environmental conditions as the desired end-of-life option indeed constitute a paradigm shift for today’s plastics industry. Considering the ever-in-creasing environmental problems associated with the disposal or incineration of fossil plastics, the increasing microplastic formation, food contamination, and rising atmospheric CO 2 concentrations, have made it clear that the time is ripe for alternative, inno-vative, and sustainable polymers with plastic-like properties. In this nexus, the present review shines new light on the benefits of biobased and, at the same time, biodegradable microbial polyhydroxyalkanoate (PHA) biopolyesters. Special emphasis is dedicated to carbon recyclability through biodegradability and compostability of these fascinating natural materials, which are slowly but surely being commercialized as replacement for fossil plastics that are produced and disposed of in multi-million-ton scale annually, resulting in a growing environmental threat. This review highlights that end-of-life options of PHA are analogous or even superior to another well-known polymer from nature, cellulose, while PHA offer the additional attributes of plastics in use with tailor-made properties. Finally, the review demonstrates how PHA biopolyesters can contribute to reaching many of the heavily discussed and desired UN Sustainable Development Goals.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2022.2124","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Achieving circularity in materials requires fundamental changes in the polymers we use today and the way they are produced. Functional polymeric materials from renewable feedstocks that do not conflict with food and animal feed, and their renewal through biodegradation under diverse environmental conditions as the desired end-of-life option indeed constitute a paradigm shift for today’s plastics industry. Considering the ever-in-creasing environmental problems associated with the disposal or incineration of fossil plastics, the increasing microplastic formation, food contamination, and rising atmospheric CO 2 concentrations, have made it clear that the time is ripe for alternative, inno-vative, and sustainable polymers with plastic-like properties. In this nexus, the present review shines new light on the benefits of biobased and, at the same time, biodegradable microbial polyhydroxyalkanoate (PHA) biopolyesters. Special emphasis is dedicated to carbon recyclability through biodegradability and compostability of these fascinating natural materials, which are slowly but surely being commercialized as replacement for fossil plastics that are produced and disposed of in multi-million-ton scale annually, resulting in a growing environmental threat. This review highlights that end-of-life options of PHA are analogous or even superior to another well-known polymer from nature, cellulose, while PHA offer the additional attributes of plastics in use with tailor-made properties. Finally, the review demonstrates how PHA biopolyesters can contribute to reaching many of the heavily discussed and desired UN Sustainable Development Goals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.