PRODUCTION OF COMPOSITE PARTICLEBOARD FROM WASTE PLUM PITS (PRUNUS DOMESTICA) AND IMPROVEMENT OF ITS CHARACTERISTICS

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Cellulose Chemistry and Technology Pub Date : 2023-07-20 DOI:10.35812/cellulosechemtechnol.2023.57.53
Melih Şahinöz, Hüseyi̇n YILMAZ ARUNTAŞ, M. Gürü
{"title":"PRODUCTION OF COMPOSITE PARTICLEBOARD FROM WASTE PLUM PITS (PRUNUS DOMESTICA) AND IMPROVEMENT OF ITS CHARACTERISTICS","authors":"Melih Şahinöz, Hüseyi̇n YILMAZ ARUNTAŞ, M. Gürü","doi":"10.35812/cellulosechemtechnol.2023.57.53","DOIUrl":null,"url":null,"abstract":"This paper deals with investigating the feasibility of using waste plum pits in the production of composite particleboard materials and the improvement of their mechanical and physical properties. Biodegradability, flammability and water absorption are the primary disadvantages of wood-based composites, which reduce their service life. In this experimental study, waste colemanite was used to decrease the known flammability of wood composites. Phenol formaldehyde (PF) was used to increase the water resistance and prevent biodegradability of the prepared materials, and hemp fiber was added to increase their mechanical strength. Thus, the objective was to avoid the disadvantages of wood-based materials. Based on the results of the flexural strength test, the optimum polymer composite material production parameters were determined to be as follows: 0.50 filler/binder ratio, 56 kg/cm2 moulding pressure and 0.75 hemp fiber ratio. According to the results of the experiments, the use of waste colemanite in the production of composite materials improves their non-flammability, while decreasing flexural and screw withdrawal strengths. It was determined that waste plum pits could be used to substitute for wood chips, as an alternative filler material in the production of composite materials. As a result, eco-friendly polymer composite materials were produced from waste plum pits, hemp fiber, and waste colemanite. The obtained composite materials are compliant with applicable standards and are suitable for application as building materials for use in both interior and exterior space.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.53","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with investigating the feasibility of using waste plum pits in the production of composite particleboard materials and the improvement of their mechanical and physical properties. Biodegradability, flammability and water absorption are the primary disadvantages of wood-based composites, which reduce their service life. In this experimental study, waste colemanite was used to decrease the known flammability of wood composites. Phenol formaldehyde (PF) was used to increase the water resistance and prevent biodegradability of the prepared materials, and hemp fiber was added to increase their mechanical strength. Thus, the objective was to avoid the disadvantages of wood-based materials. Based on the results of the flexural strength test, the optimum polymer composite material production parameters were determined to be as follows: 0.50 filler/binder ratio, 56 kg/cm2 moulding pressure and 0.75 hemp fiber ratio. According to the results of the experiments, the use of waste colemanite in the production of composite materials improves their non-flammability, while decreasing flexural and screw withdrawal strengths. It was determined that waste plum pits could be used to substitute for wood chips, as an alternative filler material in the production of composite materials. As a result, eco-friendly polymer composite materials were produced from waste plum pits, hemp fiber, and waste colemanite. The obtained composite materials are compliant with applicable standards and are suitable for application as building materials for use in both interior and exterior space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用废弃李坑生产复合刨花板及其特性的改进
本文探讨了利用废弃李坑生产复合刨花板的可行性,并对其力学性能和物理性能进行了改进。生物降解性、可燃性和吸水性是木质复合材料的主要缺点,这降低了其使用寿命。在这项实验研究中,废弃的colemanite被用来降低已知的木材复合材料的可燃性。采用酚醛树脂(PF)提高材料的耐水性和生物降解性,并加入大麻纤维提高材料的机械强度。因此,目的是避免木质材料的缺点。根据弯曲强度试验结果,确定了聚合物复合材料的最佳生产参数为:填料/粘结剂比为0.50,成型压力为56kg/cm2,大麻纤维比为0.75。根据实验结果,在复合材料的生产中使用废弃的colemanite提高了其不可燃性,同时降低了弯曲强度和螺旋拔出强度。研究表明,废弃李坑可以代替木屑,作为复合材料生产中的一种替代填充材料。结果,利用废弃的李坑、大麻纤维和废弃的硅藻土生产出了环保型聚合物复合材料。所获得的复合材料符合适用标准,适合用作室内外空间的建筑材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellulose Chemistry and Technology
Cellulose Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
2.30
自引率
23.10%
发文量
81
审稿时长
7.3 months
期刊介绍: Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry. Topics include: • studies of structure and properties • biological and industrial development • analytical methods • chemical and microbiological modifications • interactions with other materials
期刊最新文献
WHITE-ROT FUNGAL PRETREATMENT OF WHEAT STRAW: EFFECT ON ENZYMATIC HYDROLYSIS OF CARBOHYDRATE POLYMERS EXTRACTION, CHARACTERIZATION AND KINETICS OF THERMAL DECOMPOSITION OF LIGNIN FROM DATE SEEDS USING MODEL-FREE AND FITTING APPROACHES EFFECT OF NATURAL DYES AND DIFFERENT MORDANT TREATMENTS ON ULTRA-VIOLET PROTECTION PROPERTY OF COTTON FABRIC A STUDY OF CELLULOSE AND LIGNIN EXTRACTED FROM SĀNCI BARK AND THEIR MODIFICATION EFFECT OF CELLULOSE NANOFIBERS FROM RED COCONUT PEDUNCLE WASTE AS REINFORCEMENT IN EPOXY COMPOSITE SHEETS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1