Simple and easy way for students to develop a dynamic model on Excel sheet

IF 2.2 Q2 EDUCATION, SCIENTIFIC DISCIPLINES Chemistry Teacher International : best practices in chemistry education Pub Date : 2022-01-27 DOI:10.1515/cti-2020-0035
M. Kamata, Asuka Kamata
{"title":"Simple and easy way for students to develop a dynamic model on Excel sheet","authors":"M. Kamata, Asuka Kamata","doi":"10.1515/cti-2020-0035","DOIUrl":null,"url":null,"abstract":"Abstract Radioactive decay is not only important in the field of radiochemistry but also useful as a teaching material for chemical kinetics. Although differential equations are often used to explain how decay rate changes over time, there are many students even in college or university who are not very good at mathematics and have difficulty in solving differential equations. Those students are expected to appreciate institutive and schematic illustrations using Excel sheets. In this paper, a water and tank model to demonstrate how radionuclides decay and decrease over time is presented as an example of the model that the students can develop or rearrange by themselves. Therefore, only four arithmetical operations were used in the sheet, so that the students can easily grasp the basic concept of a decay curve or radioactive equilibrium even if they do not have great knowledge of differential equations. In addition, only “Record Macro” and built in “Charts” were used on the sheet, and therefore, no knowledge or skill in graphic programming, such as Visual Basic, is needed to make and use the sheet. A brief online survey indicated the model was interesting to high school students. Since Excel is widely used all over the world, the sheets we have developed can be used in many countries without additional expense.","PeriodicalId":93272,"journal":{"name":"Chemistry Teacher International : best practices in chemistry education","volume":"4 1","pages":"61 - 70"},"PeriodicalIF":2.2000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Teacher International : best practices in chemistry education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cti-2020-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Radioactive decay is not only important in the field of radiochemistry but also useful as a teaching material for chemical kinetics. Although differential equations are often used to explain how decay rate changes over time, there are many students even in college or university who are not very good at mathematics and have difficulty in solving differential equations. Those students are expected to appreciate institutive and schematic illustrations using Excel sheets. In this paper, a water and tank model to demonstrate how radionuclides decay and decrease over time is presented as an example of the model that the students can develop or rearrange by themselves. Therefore, only four arithmetical operations were used in the sheet, so that the students can easily grasp the basic concept of a decay curve or radioactive equilibrium even if they do not have great knowledge of differential equations. In addition, only “Record Macro” and built in “Charts” were used on the sheet, and therefore, no knowledge or skill in graphic programming, such as Visual Basic, is needed to make and use the sheet. A brief online survey indicated the model was interesting to high school students. Since Excel is widely used all over the world, the sheets we have developed can be used in many countries without additional expense.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单方便的方法,让学生在Excel表格上开发动态模型
放射性衰变不仅在放射化学领域具有重要意义,而且作为化学动力学的教材也很有用。虽然微分方程经常被用来解释衰减率是如何随时间变化的,但有很多学生甚至在大学里也不是很擅长数学,很难解微分方程。这些学生应该能够使用Excel表格欣赏制度和原理图。在本文中,一个水和水箱模型展示了放射性核素如何随着时间的推移而衰变和减少,作为一个例子,学生可以自己开发或重新排列模型。因此,在表格中只使用了四种算术运算,使学生即使不太了解微分方程,也能很容易地掌握衰变曲线或放射性平衡的基本概念。此外,在工作表上只使用了“Record Macro”和内置的“Charts”,因此,制作和使用工作表不需要图形编程的知识或技能,例如Visual Basic。一项简短的在线调查显示,高中生对这种模式很感兴趣。由于Excel在世界各地广泛使用,我们开发的表格可以在许多国家使用,而无需额外费用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the relationship between students’ argumentation and chemical representational ability: a case study of hybrid learning oriented in the environmental chemistry course University and local recyclable material cooperative – building bridges around e-waste Designing a learning environment based on the spiral of skills to overcome the didactic obstacles associated with teaching the Daniell cell Does it occur or not? – A structured approach to support students in determining the spontaneity of chemical reactions Relativistic effects on the chemistry of heavier elements: why not given proper importance in chemistry education at the undergraduate and postgraduate level?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1