AutoOmics: New multimodal approach for multi-omics research

Chi Xu , Denghui Liu , Lei Zhang , Zhimeng Xu , Wenjun He , Hualiang Jiang , Mingyue Zheng , Nan Qiao
{"title":"AutoOmics: New multimodal approach for multi-omics research","authors":"Chi Xu ,&nbsp;Denghui Liu ,&nbsp;Lei Zhang ,&nbsp;Zhimeng Xu ,&nbsp;Wenjun He ,&nbsp;Hualiang Jiang ,&nbsp;Mingyue Zheng ,&nbsp;Nan Qiao","doi":"10.1016/j.ailsci.2021.100012","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning is very promising in solving problems in omics research, such as genomics, epigenomics, proteomics, and metabolics. The design of neural network architecture is very important in modeling omics data against different scientific problems. Residual fully-connected neural network (RFCN) was proposed to provide better neural network architectures for modeling omics data. The next challenge for omics research is how to integrate information from different omics data using deep learning, so that information from different molecular system levels could be combined to predict the target. In this paper, we present a novel multi-omics integration approach named AutoOmics that could efficiently integrate information from different omics data and achieve better accuracy than previous approaches. We evaluated our method on four different tasks: drug repositioning, target gene prediction, breast cancer subtyping and cancer type prediction, and all the four tasks achieved state of art performances.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266731852100012X/pdfft?md5=79e7ba5e874a5e7ae6cd628f55bfdfeb&pid=1-s2.0-S266731852100012X-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266731852100012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep learning is very promising in solving problems in omics research, such as genomics, epigenomics, proteomics, and metabolics. The design of neural network architecture is very important in modeling omics data against different scientific problems. Residual fully-connected neural network (RFCN) was proposed to provide better neural network architectures for modeling omics data. The next challenge for omics research is how to integrate information from different omics data using deep learning, so that information from different molecular system levels could be combined to predict the target. In this paper, we present a novel multi-omics integration approach named AutoOmics that could efficiently integrate information from different omics data and achieve better accuracy than previous approaches. We evaluated our method on four different tasks: drug repositioning, target gene prediction, breast cancer subtyping and cancer type prediction, and all the four tasks achieved state of art performances.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoOmics:多组学研究的多模态新方法
深度学习在解决基因组学、表观基因组学、蛋白质组学和代谢学等组学研究中的问题方面非常有前景。神经网络体系结构的设计对于针对不同科学问题的组学数据建模非常重要。残差全连接神经网络(RFCN)为组学数据建模提供了更好的神经网络架构。组学研究的下一个挑战是如何利用深度学习整合来自不同组学数据的信息,从而将来自不同分子系统水平的信息结合起来预测靶标。在本文中,我们提出了一种新的多组学集成方法AutoOmics,该方法可以有效地集成来自不同组学数据的信息,并且比以前的方法具有更高的准确性。我们在药物重新定位、靶基因预测、乳腺癌亚型和癌症类型预测四个不同的任务上对我们的方法进行了评估,四个任务都达到了最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
期刊最新文献
Pharmacological profiles of neglected tropical disease drugs DTA Atlas: A massive-scale drug repurposing database Modeling PROTAC degradation activity with machine learning Machine learning proteochemometric models for Cereblon glue activity predictions Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1