Optimization for Onshore Wind Farm Cable: Connection Layout using ACO-AIA algorithm

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2019-04-01 DOI:10.11113/MATEMATIKA.V35.N1.1032
M. Tifroute, H. Bouzahir
{"title":"Optimization for Onshore Wind Farm Cable: Connection Layout using ACO-AIA algorithm","authors":"M. Tifroute, H. Bouzahir","doi":"10.11113/MATEMATIKA.V35.N1.1032","DOIUrl":null,"url":null,"abstract":"The wind farm layout optimization problem is similar to the classical mathematical problem of finding the Steiner Minimal Tree Problem (SMTP) of a weighted undirected graph. Due to the cable current-carrying capacity limitation, the cable sectional area should be carefully selected to meet the system operational requirement and this constraint should be considered during the SMTP formulation process. Hence, traditional SMTP algorithm cannot ensure a minimal cable investment layout. In this paper, a hybrid algorithm based on modified Ants Colony Optimization (ACO) and Artificial Immune Algorithm (AIA) for solving SMTP is introduced. Since the Steiner Tree Problem is NP-hard, we design an algorithm to construct high quality Steiner trees in a short time which is suitable for real time multicast routing in networks. After the breadth - first traversal of the minimal graph obtained by ACO, the terminal points are divided into different convex hull sets, and the full Steiner tree is structured from the convex hull sets partition. The Steiner points can then be vaccinated by AIA to get an optimal graph. The average optimization effect of AIA is shorter than the minimal graph obtained using ACO, and the performance of the algorithm is shown. We give an example of application in optimization for onshore wind farm Cable. The possibility of using different sectional area’s cable is also considered in this paper.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V35.N1.1032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The wind farm layout optimization problem is similar to the classical mathematical problem of finding the Steiner Minimal Tree Problem (SMTP) of a weighted undirected graph. Due to the cable current-carrying capacity limitation, the cable sectional area should be carefully selected to meet the system operational requirement and this constraint should be considered during the SMTP formulation process. Hence, traditional SMTP algorithm cannot ensure a minimal cable investment layout. In this paper, a hybrid algorithm based on modified Ants Colony Optimization (ACO) and Artificial Immune Algorithm (AIA) for solving SMTP is introduced. Since the Steiner Tree Problem is NP-hard, we design an algorithm to construct high quality Steiner trees in a short time which is suitable for real time multicast routing in networks. After the breadth - first traversal of the minimal graph obtained by ACO, the terminal points are divided into different convex hull sets, and the full Steiner tree is structured from the convex hull sets partition. The Steiner points can then be vaccinated by AIA to get an optimal graph. The average optimization effect of AIA is shorter than the minimal graph obtained using ACO, and the performance of the algorithm is shown. We give an example of application in optimization for onshore wind farm Cable. The possibility of using different sectional area’s cable is also considered in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
陆上风电场电缆的优化:使用ACO-IA算法的连接布局
风电场布局优化问题类似于求解加权无向图的Steiner极小树问题(SMTP)的经典数学问题。由于电缆载流能力的限制,应仔细选择电缆截面积以满足系统运行要求,在SMTP制定过程中应考虑这一限制。因此,传统的SMTP算法无法确保最小的电缆投资布局。本文介绍了一种基于改进蚁群优化(ACO)和人工免疫算法(AIA)的SMTP混合算法。由于Steiner树问题是NP难问题,我们设计了一种适用于网络中实时多播路由的算法来在短时间内构造高质量的Steiner树。在对ACO得到的极小图进行广度优先遍历后,将端点划分为不同的凸包集,并根据凸包集的划分构造出完整的Steiner树。然后,AIA可以对Steiner点进行接种以获得最优图。AIA的平均优化效果比使用ACO获得的最小图更短,并展示了算法的性能。文中给出了Cable在陆上风电场优化中的应用实例。文中还考虑了使用不同截面积电缆的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1