{"title":"A population-based incremental learning algorithm to identify optimal location of left-turn restrictions in urban grid networks","authors":"Murat Bayrak, Zhengyao Yu, V. Gayah","doi":"10.1080/21680566.2022.2102553","DOIUrl":null,"url":null,"abstract":"The treatment of left turns at signalized intersections drives the development of signal phasing and timing plans and also plays an important role in overall traffic network operations. Accommodating left turns allows for the most direct routeing but reduces intersection capacity, whereas restricting left turns improves capacity but requires some vehicles to travel longer distances. This paper proposes a population-based incremental learning (PBIL) algorithm to determine at which intersections left-turn restrictions should be enacted to maximize a network's operational performance. The performance of each configuration is tested in a micro-simulation environment on both perfect and imperfect square grid networks. Comparison with a partial enumeration of feasible options reveals that the PBIL algorithm is effective at identifying a near-optimal configuration of left-turn restrictions. The resulting configurations suggest that left turns should be generally restricted at intersections that carry the most flow. These intersections typically occur in the central portion of the network when demands are relatively uniform. Doing so helps to provide additional intersection capacity at the locations where it is most necessary, while minimizing the additional travel distance that is incurred due to detours caused by the left-turn restrictions. These provide insight as to how urban traffic networks might be managed to improve network efficiency by only enacting left-turn restrictions at a subset of locations.","PeriodicalId":48872,"journal":{"name":"Transportmetrica B-Transport Dynamics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica B-Transport Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21680566.2022.2102553","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 1
Abstract
The treatment of left turns at signalized intersections drives the development of signal phasing and timing plans and also plays an important role in overall traffic network operations. Accommodating left turns allows for the most direct routeing but reduces intersection capacity, whereas restricting left turns improves capacity but requires some vehicles to travel longer distances. This paper proposes a population-based incremental learning (PBIL) algorithm to determine at which intersections left-turn restrictions should be enacted to maximize a network's operational performance. The performance of each configuration is tested in a micro-simulation environment on both perfect and imperfect square grid networks. Comparison with a partial enumeration of feasible options reveals that the PBIL algorithm is effective at identifying a near-optimal configuration of left-turn restrictions. The resulting configurations suggest that left turns should be generally restricted at intersections that carry the most flow. These intersections typically occur in the central portion of the network when demands are relatively uniform. Doing so helps to provide additional intersection capacity at the locations where it is most necessary, while minimizing the additional travel distance that is incurred due to detours caused by the left-turn restrictions. These provide insight as to how urban traffic networks might be managed to improve network efficiency by only enacting left-turn restrictions at a subset of locations.
期刊介绍:
Transportmetrica B is an international journal that aims to bring together contributions of advanced research in understanding and practical experience in handling the dynamic aspects of transport systems and behavior, and hence the sub-title is set as “Transport Dynamics”.
Transport dynamics can be considered from various scales and scopes ranging from dynamics in traffic flow, travel behavior (e.g. learning process), logistics, transport policy, to traffic control. Thus, the journal welcomes research papers that address transport dynamics from a broad perspective, ranging from theoretical studies to empirical analysis of transport systems or behavior based on actual data.
The scope of Transportmetrica B includes, but is not limited to, the following: dynamic traffic assignment, dynamic transit assignment, dynamic activity-based modeling, applications of system dynamics in transport planning, logistics planning and optimization, traffic flow analysis, dynamic programming in transport modeling and optimization, traffic control, land-use and transport dynamics, day-to-day learning process (model and behavioral studies), time-series analysis of transport data and demand, traffic emission modeling, time-dependent transport policy analysis, transportation network reliability and vulnerability, simulation of traffic system and travel behavior, longitudinal analysis of traveler behavior, etc.