{"title":"Método del Punto Proximal Inexacto Usando Cuasi-Distancias para Optimización de Funciones KL.","authors":"Erik A. Papa Quiroz, Jose L. Huaman ˜Naupa","doi":"10.15381/pesquimat.v25i1.23144","DOIUrl":null,"url":null,"abstract":"Se introduce un algoritmo de punto proximal inexacto utilizando cuasi-distancias para dar solución a un problema de minimización en el espacio Euclideano. Este algoritmo ha sido motivado por el método proximal introducido por Attouch et al. [1] pero en este caso consideramos cuasi-distancias en vez de la distancia Euclidiana, funciones que satisfacen la desigualdad de Kurdyka-Lojasiewicz, errores vectoriales en el residual del punto crítico de los subproblemas proximales regula-rizados. Obtenemos bajo algunos supuestos adicionales la convergencia global de la sucesión generada por el algoritmo a un punto crítico del problema.","PeriodicalId":33010,"journal":{"name":"Pesquimat","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquimat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15381/pesquimat.v25i1.23144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Se introduce un algoritmo de punto proximal inexacto utilizando cuasi-distancias para dar solución a un problema de minimización en el espacio Euclideano. Este algoritmo ha sido motivado por el método proximal introducido por Attouch et al. [1] pero en este caso consideramos cuasi-distancias en vez de la distancia Euclidiana, funciones que satisfacen la desigualdad de Kurdyka-Lojasiewicz, errores vectoriales en el residual del punto crítico de los subproblemas proximales regula-rizados. Obtenemos bajo algunos supuestos adicionales la convergencia global de la sucesión generada por el algoritmo a un punto crítico del problema.