Ming‐Chung Wu, Ruei-Yu Kuo, Yin‐Hsuan Chang, Shih-Hsuan Chen, Ching-Mei Ho, W. Su
{"title":"Alkali Metal Cation Incorporated Ag3BiI6 Absorbers for Efficient and Stable Rudorffite Solar Cells","authors":"Ming‐Chung Wu, Ruei-Yu Kuo, Yin‐Hsuan Chang, Shih-Hsuan Chen, Ching-Mei Ho, W. Su","doi":"10.1093/oxfmat/itab017","DOIUrl":null,"url":null,"abstract":"\n \n \n Toxic lead and poor stability are the main obstacles of perovskite solar cells. Lead-free silver bismuth iodide (SBI) was first attempted as solar cells photovoltaic materials in 2016. However, the short-circuit current of the SBI rudorffite materials is commonly below 10 mA/cm2, limiting the overall photovoltaic performance. Here, we present a chemical composition engineering to enhance the photovoltaic performance.\n \n \n \n In this study, we incorporated a series of alkali metal cations (Li+, Na+, K+, Rb+, and Cs+) into Ag3BiI6 absorbers to investigate the effects on the photovoltaic performance of rudorffite solar cells.\n \n \n \n Cs+ doping improved VOC and Na+ doping showed an obvious enhancement in JSC. Therefore, we co-doped Na+ and Cs+ into SBI (Na/Cs-SBI) as the absorber and investigated the crystal structure, surface morphology, and optical properties. The photo-assisted Kelvin probe force microscopy (photo-KPFM) was used to measure surface potential and verified that Na/Cs doping could reduce the electron trapping at the grain boundary and facilitate electron transportation.\n \n \n \n Na/Cs-SBI reduced the electron-holes pairs recombination and promoted the carrier transport of rudorffite solar cells. Finally, the Na/Cs-SBI rudorffite solar cell exhibited a PCE of 2.50%, a 46.0% increase to the SBI device (PCE = 1.71%), and was stable in ambient conditions for over 6 months.\n","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itab017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Toxic lead and poor stability are the main obstacles of perovskite solar cells. Lead-free silver bismuth iodide (SBI) was first attempted as solar cells photovoltaic materials in 2016. However, the short-circuit current of the SBI rudorffite materials is commonly below 10 mA/cm2, limiting the overall photovoltaic performance. Here, we present a chemical composition engineering to enhance the photovoltaic performance.
In this study, we incorporated a series of alkali metal cations (Li+, Na+, K+, Rb+, and Cs+) into Ag3BiI6 absorbers to investigate the effects on the photovoltaic performance of rudorffite solar cells.
Cs+ doping improved VOC and Na+ doping showed an obvious enhancement in JSC. Therefore, we co-doped Na+ and Cs+ into SBI (Na/Cs-SBI) as the absorber and investigated the crystal structure, surface morphology, and optical properties. The photo-assisted Kelvin probe force microscopy (photo-KPFM) was used to measure surface potential and verified that Na/Cs doping could reduce the electron trapping at the grain boundary and facilitate electron transportation.
Na/Cs-SBI reduced the electron-holes pairs recombination and promoted the carrier transport of rudorffite solar cells. Finally, the Na/Cs-SBI rudorffite solar cell exhibited a PCE of 2.50%, a 46.0% increase to the SBI device (PCE = 1.71%), and was stable in ambient conditions for over 6 months.