Super-Resolution Reconstruction Based on BM3D and Compressed Sensing.

IF 1.5 4区 工程技术 Q3 MICROSCOPY Microscopy Pub Date : 2022-06-16 DOI:10.1093/jmicro/dfac029
Cheng Tao, Dongdong Jia
{"title":"Super-Resolution Reconstruction Based on BM3D and Compressed Sensing.","authors":"Cheng Tao, Dongdong Jia","doi":"10.1093/jmicro/dfac029","DOIUrl":null,"url":null,"abstract":"In the various papers published in the field of super-resolution microscopy, denoising of raw images based on Block-matching and 3D filtering (BM3D) was rarely reported. BM3D for blocks of different sizes was studied. The denoising ability is related to block sizes. The larger the block is, the better the denoising effect is. When the block size is bigger than 40, the good denoising effect can be achieved. Denoising has great influence on the super-resolution reconstruction effect and the reconstruction time. Better super-resolution reconstruction and shorter reconstruction time can be achieved after denoising. Using compressed sensing, only 20 raw images are needed for super-resolution reconstruction. The temporal resolution is less than half a second. The spatial resolution is also greatly improved.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jmicro/dfac029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

In the various papers published in the field of super-resolution microscopy, denoising of raw images based on Block-matching and 3D filtering (BM3D) was rarely reported. BM3D for blocks of different sizes was studied. The denoising ability is related to block sizes. The larger the block is, the better the denoising effect is. When the block size is bigger than 40, the good denoising effect can be achieved. Denoising has great influence on the super-resolution reconstruction effect and the reconstruction time. Better super-resolution reconstruction and shorter reconstruction time can be achieved after denoising. Using compressed sensing, only 20 raw images are needed for super-resolution reconstruction. The temporal resolution is less than half a second. The spatial resolution is also greatly improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BM3D和压缩感知的超分辨率重建。
在超分辨率显微镜领域发表的各种论文中,很少报道基于块匹配和三维滤波(BM3D)的原始图像去噪。研究了不同尺寸块体的BM3D。去噪能力与块大小有关。块越大,去噪效果越好。当块大小大于40时,可以获得良好的去噪效果。去噪对超分辨率重建效果和重建时间有很大影响。去噪后可以获得更好的超分辨率重建和更短的重建时间。使用压缩传感,超分辨率重建只需要20张原始图像。时间分辨率不到半秒。空间分辨率也大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy
Microscopy Physics and Astronomy-Instrumentation
CiteScore
3.30
自引率
11.10%
发文量
76
期刊介绍: Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.
期刊最新文献
Fast computational approach with prior dimension reduction for three-dimensional chemical component analysis using CT data of spectral imaging. Spin polarization of photoelectrons emitted from spin-orbit coupled surface states of Pb/Ge(111). Optimization of method for cross section hydrogels preparation using high-pressure freezing. Diffraction contrast of ferroelectric domains in DPC STEM images. Correction to: Electron holography observation of electron spin polarization around charged insulating wire.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1