{"title":"In This Issue","authors":"","doi":"10.1093/jmicro/dfad038","DOIUrl":"https://doi.org/10.1093/jmicro/dfad038","url":null,"abstract":"","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42276181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract It is difficult to use scanning electron microscopy to observe the structure and movement of biological tissue immersed in the solution. To enable such observations, we created a highly deformable and electron-transmissive polyimide film that can withstand the pressure difference between the high-vacuum electron column and the atmospheric-pressure sample chamber. With this film, we used scanning electron microscopy to measure the intrinsic fine structure and movement of the contractile fibers of excised mouse heart immersed in physiological solutions. Our measurements revealed that the excised heart is a dynamic tissue that undergoes relaxation oscillation based on a three-dimensional force balance.
{"title":"Real-time scanning electron microscopy of unfixed tissue in the solution using a deformable and electron-transmissive film","authors":"Seine A. Shintani, S. Yamaguchi, H. Takadama","doi":"10.1093/jmicro/dfac030","DOIUrl":"https://doi.org/10.1093/jmicro/dfac030","url":null,"abstract":"Abstract It is difficult to use scanning electron microscopy to observe the structure and movement of biological tissue immersed in the solution. To enable such observations, we created a highly deformable and electron-transmissive polyimide film that can withstand the pressure difference between the high-vacuum electron column and the atmospheric-pressure sample chamber. With this film, we used scanning electron microscopy to measure the intrinsic fine structure and movement of the contractile fibers of excised mouse heart immersed in physiological solutions. Our measurements revealed that the excised heart is a dynamic tissue that undergoes relaxation oscillation based on a three-dimensional force balance.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":"71 1","pages":"297 - 301"},"PeriodicalIF":1.8,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48209000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kazuaki Kawahara, R. Ishikawa, Shun Sasano, N. Shibata, Y. Ikuhara
Atomic-resolution electron microscopy imaging of solid state material is a powerful method for structural analysis. Scanning transmission electron microscopy (STEM) is one of the actively used techniques to directly observe atoms in materials. However, some materials are easily damaged by the electron beam irradiation, and only noisy images are available when we decrease the electron dose to avoid beam damages. Therefore, a denoising process is necessary for precise structural analysis in low-dose STEM. In this study, we propose total variation (TV) denoising algorithm to remove quantum noise in a STEM image. We defined an entropy of STEM image that corresponds to the image contrast to determine a hyperparameter and we found that there is a hyperparameter that maximize the entropy. We acquired atomic resolution STEM image of CaF2 viewed along the [001] direction, and executed TV denoising. The atomic columns of Ca and F are clearly visualized by the TV denoising, and atomic position of Ca and F are determined with the error of ± 1 pm and ± 4 pm, respectively.
{"title":"Atomic-Resolution STEM Image Denoising by Total Variation Regularization.","authors":"Kazuaki Kawahara, R. Ishikawa, Shun Sasano, N. Shibata, Y. Ikuhara","doi":"10.1093/jmicro/dfac032","DOIUrl":"https://doi.org/10.1093/jmicro/dfac032","url":null,"abstract":"Atomic-resolution electron microscopy imaging of solid state material is a powerful method for structural analysis. Scanning transmission electron microscopy (STEM) is one of the actively used techniques to directly observe atoms in materials. However, some materials are easily damaged by the electron beam irradiation, and only noisy images are available when we decrease the electron dose to avoid beam damages. Therefore, a denoising process is necessary for precise structural analysis in low-dose STEM. In this study, we propose total variation (TV) denoising algorithm to remove quantum noise in a STEM image. We defined an entropy of STEM image that corresponds to the image contrast to determine a hyperparameter and we found that there is a hyperparameter that maximize the entropy. We acquired atomic resolution STEM image of CaF2 viewed along the [001] direction, and executed TV denoising. The atomic columns of Ca and F are clearly visualized by the TV denoising, and atomic position of Ca and F are determined with the error of ± 1 pm and ± 4 pm, respectively.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48967934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the various papers published in the field of super-resolution microscopy, denoising of raw images based on Block-matching and 3D filtering (BM3D) was rarely reported. BM3D for blocks of different sizes was studied. The denoising ability is related to block sizes. The larger the block is, the better the denoising effect is. When the block size is bigger than 40, the good denoising effect can be achieved. Denoising has great influence on the super-resolution reconstruction effect and the reconstruction time. Better super-resolution reconstruction and shorter reconstruction time can be achieved after denoising. Using compressed sensing, only 20 raw images are needed for super-resolution reconstruction. The temporal resolution is less than half a second. The spatial resolution is also greatly improved.
{"title":"Super-Resolution Reconstruction Based on BM3D and Compressed Sensing.","authors":"Cheng Tao, Dongdong Jia","doi":"10.1093/jmicro/dfac029","DOIUrl":"https://doi.org/10.1093/jmicro/dfac029","url":null,"abstract":"In the various papers published in the field of super-resolution microscopy, denoising of raw images based on Block-matching and 3D filtering (BM3D) was rarely reported. BM3D for blocks of different sizes was studied. The denoising ability is related to block sizes. The larger the block is, the better the denoising effect is. When the block size is bigger than 40, the good denoising effect can be achieved. Denoising has great influence on the super-resolution reconstruction effect and the reconstruction time. Better super-resolution reconstruction and shorter reconstruction time can be achieved after denoising. Using compressed sensing, only 20 raw images are needed for super-resolution reconstruction. The temporal resolution is less than half a second. The spatial resolution is also greatly improved.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42706213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaname Yoshida, Y. Sasaki, A. Kuwabara, Y. Ikuhara
A novel setup for the in situ observation of electrochemical reactions in liquids through atmospheric scanning electron microscopy is presented. The proposed liquid-phase electrochemical SEM system consists of a working electrode (WE) on an electrochemical chip (e-chip) and other two electrodes inserted into a liquid electrolyte; electrochemical reactions occurring at the WE are controlled precisely with an external potentiostat/galvanostat connected to the three electrodes. Copper deposition from a CuSO4 aqueous solution was conducted onto the WE, and simultaneous acquisition of nanoscale images and reliable electrochemical data was achieved with the proposed setup.
{"title":"Reliable Electrochemical Setup for in situ Observations with an Atmospheric SEM.","authors":"Kaname Yoshida, Y. Sasaki, A. Kuwabara, Y. Ikuhara","doi":"10.1093/jmicro/dfac028","DOIUrl":"https://doi.org/10.1093/jmicro/dfac028","url":null,"abstract":"A novel setup for the in situ observation of electrochemical reactions in liquids through atmospheric scanning electron microscopy is presented. The proposed liquid-phase electrochemical SEM system consists of a working electrode (WE) on an electrochemical chip (e-chip) and other two electrodes inserted into a liquid electrolyte; electrochemical reactions occurring at the WE are controlled precisely with an external potentiostat/galvanostat connected to the three electrodes. Copper deposition from a CuSO4 aqueous solution was conducted onto the WE, and simultaneous acquisition of nanoscale images and reliable electrochemical data was achieved with the proposed setup.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46450430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Saddam Hussain Khan, Najmus Saher Shah, Rabia Nuzhat, A. Majid, Hani Alquhayz, Asifullah Khan
Malaria is a life-threatening infection that infects the red blood cells (RBCs) that gradually grows throughout the body. The plasmodium parasite is caused by a female anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to predict infected parasitic cells. The proposed technique exploits deep convolutional neural network (CNN) learning capability to detect the thin-blood smear parasitic patients from healthy individuals. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel Squeezing-Boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic malaria pattern related to region-homogeneity, structural obstruction, and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and Transfer Learning (TL) idea in each STM block at abstract, intermediate, and target levels to capture minor contrast and texture variation between parasitic and normal artifacts. The malaria input images to the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform the train from scratch, and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980, and AUC: 0.996) of STM-SB-RENet suggests that it can be utilized to screen parasitic malaria patients.
{"title":"Malaria Parasite Classification Framework using a Novel Channel Squeezed and Boosted CNN.","authors":"Dr. Saddam Hussain Khan, Najmus Saher Shah, Rabia Nuzhat, A. Majid, Hani Alquhayz, Asifullah Khan","doi":"10.1093/jmicro/dfac027","DOIUrl":"https://doi.org/10.1093/jmicro/dfac027","url":null,"abstract":"Malaria is a life-threatening infection that infects the red blood cells (RBCs) that gradually grows throughout the body. The plasmodium parasite is caused by a female anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to predict infected parasitic cells. The proposed technique exploits deep convolutional neural network (CNN) learning capability to detect the thin-blood smear parasitic patients from healthy individuals. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel Squeezing-Boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic malaria pattern related to region-homogeneity, structural obstruction, and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and Transfer Learning (TL) idea in each STM block at abstract, intermediate, and target levels to capture minor contrast and texture variation between parasitic and normal artifacts. The malaria input images to the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform the train from scratch, and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980, and AUC: 0.996) of STM-SB-RENet suggests that it can be utilized to screen parasitic malaria patients.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42209666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we propose a useful system for remote sharing of transmission electron microscope (TEM) images by connecting three computers: a computer connected to a TEM, a computer distributing images, and a computer receiving images. Then, we confirmed the performance of three web conferencing systems, Microsoft Teams, Zoom, and Google Meet, to evaluate the usefulness of their remote use based on the clarity of images, smoothness of movement, and time lag in images on each computer in the system. A screen image can be captured using the following two methods: a virtual camera of a video distribution software that provided a good reaction speed to transfer images and the screen sharing by conference system software that could share high-quality images.
{"title":"A Functional Platform for Remote use of Electron Microscopes Using Web Conferencing Systems.","authors":"Makoto Sugiura-Nakazato, Hiroshi Takase, Takeru Nakazato","doi":"10.1093/jmicro/dfac026","DOIUrl":"https://doi.org/10.1093/jmicro/dfac026","url":null,"abstract":"In this study, we propose a useful system for remote sharing of transmission electron microscope (TEM) images by connecting three computers: a computer connected to a TEM, a computer distributing images, and a computer receiving images. Then, we confirmed the performance of three web conferencing systems, Microsoft Teams, Zoom, and Google Meet, to evaluate the usefulness of their remote use based on the clarity of images, smoothness of movement, and time lag in images on each computer in the system. A screen image can be captured using the following two methods: a virtual camera of a video distribution software that provided a good reaction speed to transfer images and the screen sharing by conference system software that could share high-quality images.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44578214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Johkura, N. Usuda, Yoshihiro Tanaka, Motoaki Fukasawa, K. Murata, T. Noda, N. Ohno
Abstract The Golgi apparatus, which plays a role in various biosynthetic pathways, is usually identified in electron microscopy by the morphological criteria of lamellae. A 3-dimensional analyses with serial block-face scanning electron microscope (SBF-SEM), a volume-SEM proficient in obtaining large volumes of data at the whole-cell level, could be a promising technique for understanding the precise distribution and complex ultrastructure of Golgi apparatus, although optimal methods for such analyses remain unclear since the observation can be hampered with sample charging and low image contrast, and manual segmentation often requires significant manpower. The present study attempted the whole-cell observation and semi-automatic classification and segmentation of the Golgi apparatus in rat hepatocytes for the first time by SBF-SEM via ZIO staining, a classical osmium impregnation. The staining electron-densely visualized individual Golgi lamellae, and their ultrastructure could stably be observed without any noticeable charging. The simple thresholding of the serial images enabled the efficient reconstruction of the labeled Golgi apparatus, which revealed plural Golgi apparatus in one hepatocyte. The combination of the heavy metal-based histochemistry of zinc, iodine and osmium (ZIO) staining and SBF-SEM was useful in the 3-dimensional observation of the Golgi apparatus at the whole-cell level because of two technical advantages: (i) visualization of the Golgi apparatus without any heavy metal staining and efficient acquisition of the block-face images without additional conductive staining or any devices for eliminating charging; (ii) easy identification of the staining and hassle-free, semi-automatic classification and segmentation by simple thresholding of the images. This novel approach could elucidate the topographic characteristics of the Golgi apparatus in hepatocytes.
{"title":"Whole-cell observation of ZIO-stained Golgi apparatus in rat hepatocytes with serial block-face scanning electron microscope, SBF-SEM","authors":"K. Johkura, N. Usuda, Yoshihiro Tanaka, Motoaki Fukasawa, K. Murata, T. Noda, N. Ohno","doi":"10.1093/jmicro/dfac024","DOIUrl":"https://doi.org/10.1093/jmicro/dfac024","url":null,"abstract":"Abstract The Golgi apparatus, which plays a role in various biosynthetic pathways, is usually identified in electron microscopy by the morphological criteria of lamellae. A 3-dimensional analyses with serial block-face scanning electron microscope (SBF-SEM), a volume-SEM proficient in obtaining large volumes of data at the whole-cell level, could be a promising technique for understanding the precise distribution and complex ultrastructure of Golgi apparatus, although optimal methods for such analyses remain unclear since the observation can be hampered with sample charging and low image contrast, and manual segmentation often requires significant manpower. The present study attempted the whole-cell observation and semi-automatic classification and segmentation of the Golgi apparatus in rat hepatocytes for the first time by SBF-SEM via ZIO staining, a classical osmium impregnation. The staining electron-densely visualized individual Golgi lamellae, and their ultrastructure could stably be observed without any noticeable charging. The simple thresholding of the serial images enabled the efficient reconstruction of the labeled Golgi apparatus, which revealed plural Golgi apparatus in one hepatocyte. The combination of the heavy metal-based histochemistry of zinc, iodine and osmium (ZIO) staining and SBF-SEM was useful in the 3-dimensional observation of the Golgi apparatus at the whole-cell level because of two technical advantages: (i) visualization of the Golgi apparatus without any heavy metal staining and efficient acquisition of the block-face images without additional conductive staining or any devices for eliminating charging; (ii) easy identification of the staining and hassle-free, semi-automatic classification and segmentation by simple thresholding of the images. This novel approach could elucidate the topographic characteristics of the Golgi apparatus in hepatocytes.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":"71 1","pages":"262 - 270"},"PeriodicalIF":1.8,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42447308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Sasaki, Ayako Mizushima, Y. Mita, Kaname Yoshida, A. Kuwabara, Y. Ikuhara
Liquid-phase transmission electron microscopy (LP-TEM) can be used with an electrochemical chip (e-chip) to observe electrochemical reactions in a liquid in situ. The design of electrodes on an e-chip fabricated using microelectromechanical system (MEMS) technology cannot be easily changed. Here, we report a newly designed e-chip and its fabrication process. Electrodes with a desired shape were fabricated with various metals via an additional step of vacuum deposition onto our e-chip with a shadow mask. For precise control of the electrochemical reactions in LP-TEM, optimization of the electrode shape and material is critical.
{"title":"Design and Fabrication of an Electrochemical Chip for Liquid-Phase Transmission Electron Microscopy.","authors":"Y. Sasaki, Ayako Mizushima, Y. Mita, Kaname Yoshida, A. Kuwabara, Y. Ikuhara","doi":"10.1093/jmicro/dfac023","DOIUrl":"https://doi.org/10.1093/jmicro/dfac023","url":null,"abstract":"Liquid-phase transmission electron microscopy (LP-TEM) can be used with an electrochemical chip (e-chip) to observe electrochemical reactions in a liquid in situ. The design of electrodes on an e-chip fabricated using microelectromechanical system (MEMS) technology cannot be easily changed. Here, we report a newly designed e-chip and its fabrication process. Electrodes with a desired shape were fabricated with various metals via an additional step of vacuum deposition onto our e-chip with a shadow mask. For precise control of the electrochemical reactions in LP-TEM, optimization of the electrode shape and material is critical.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45071189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Liquid-cell transmission electron microscopy (LC-TEM) is a useful technique for observing phenomena in liquid samples with spatial and temporal resolutions similar to those of conventional transmission electron microscopy (TEM). This method is therefore expected to permit the visualization of phenomena previously inaccessible to conventional optical microscopy. However, dynamic processes such as nucleation are difficult to observe by this method because of difficulties in controlling the condition of the sample liquid in the observation area. To approach this problem, we focused on dielectrophoresis, in which electrodes are used to assemble particles, and we investigated the phenomena that occurred when an alternating-current signal was applied to an electrode in an existing liquid cell by using a phase-contrast optical microscope (PCM) and TEM. In PCM, we observed that colloidal particles in a solution were attracted to the electrodes to form assemblies, that the particles aligned along the electric field to form pearl chains and that the pearl chains accumulated to form colloidal crystals. However, these phenomena were not observed in the TEM study because of differences in the design of the relevant holders. The results of our study imply that the particle assembly by using dielectrophoretic forces in LC-TEM should be possible, but further studies, including electric device development, will be required to realize this in practice.
{"title":"Feasibility of control of particle assembly by dielectrophoresis in liquid-cell transmission electron microscopy","authors":"T. Yamazaki, Hiromasa Niinomi, Y. Kimura","doi":"10.1093/jmicro/dfac021","DOIUrl":"https://doi.org/10.1093/jmicro/dfac021","url":null,"abstract":"Abstract Liquid-cell transmission electron microscopy (LC-TEM) is a useful technique for observing phenomena in liquid samples with spatial and temporal resolutions similar to those of conventional transmission electron microscopy (TEM). This method is therefore expected to permit the visualization of phenomena previously inaccessible to conventional optical microscopy. However, dynamic processes such as nucleation are difficult to observe by this method because of difficulties in controlling the condition of the sample liquid in the observation area. To approach this problem, we focused on dielectrophoresis, in which electrodes are used to assemble particles, and we investigated the phenomena that occurred when an alternating-current signal was applied to an electrode in an existing liquid cell by using a phase-contrast optical microscope (PCM) and TEM. In PCM, we observed that colloidal particles in a solution were attracted to the electrodes to form assemblies, that the particles aligned along the electric field to form pearl chains and that the pearl chains accumulated to form colloidal crystals. However, these phenomena were not observed in the TEM study because of differences in the design of the relevant holders. The results of our study imply that the particle assembly by using dielectrophoretic forces in LC-TEM should be possible, but further studies, including electric device development, will be required to realize this in practice.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":"71 1","pages":"231 - 237"},"PeriodicalIF":1.8,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44674900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}