Increasing the efficiency of secondary resources in the mining and metallurgical industry

IF 0.9 4区 材料科学 Q3 Materials Science Journal of The South African Institute of Mining and Metallurgy Pub Date : 2023-02-23 DOI:10.17159/2411-9717/1092/2023
G. Jandieri
{"title":"Increasing the efficiency of secondary resources in the mining and metallurgical industry","authors":"G. Jandieri","doi":"10.17159/2411-9717/1092/2023","DOIUrl":null,"url":null,"abstract":"An improved methodology is presented for assessing the economic feasibility and effectiveness of recycling industrial waste. The methodology is based on the break-even control mechanism, but at the same time provides for the introduction of new evaluation criteria such as the threshold of conditionality and the degree of ore substitution. Based on an improved analysis, it becomes possible to more precisely predict recycling efficiency. A more refined determination of the lower limit of concentration of recoverable metals, at which technogenic waste can be assigned the status of secondary raw materials and processed profitably, leads to a significant expansion of the secondary raw material base suitable for recycling. The potential for recycling manganese-containing dust from the production of ferrosilicomanganese, dehydrated sludge from the hydro separation of slags, and cake from the production of electrolytic manganese dioxide at the Chiatura mining enterprise is used as an example. It is shown that with a threshold of -24% Mn content, the highest recycling efficiency can be achieved by the production of low-phosphorus manganese slag and conversion to ferrosilicomanganese using the above waste to replace 40-60% grade III and IV manganese concentrates in the feed.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The South African Institute of Mining and Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17159/2411-9717/1092/2023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

An improved methodology is presented for assessing the economic feasibility and effectiveness of recycling industrial waste. The methodology is based on the break-even control mechanism, but at the same time provides for the introduction of new evaluation criteria such as the threshold of conditionality and the degree of ore substitution. Based on an improved analysis, it becomes possible to more precisely predict recycling efficiency. A more refined determination of the lower limit of concentration of recoverable metals, at which technogenic waste can be assigned the status of secondary raw materials and processed profitably, leads to a significant expansion of the secondary raw material base suitable for recycling. The potential for recycling manganese-containing dust from the production of ferrosilicomanganese, dehydrated sludge from the hydro separation of slags, and cake from the production of electrolytic manganese dioxide at the Chiatura mining enterprise is used as an example. It is shown that with a threshold of -24% Mn content, the highest recycling efficiency can be achieved by the production of low-phosphorus manganese slag and conversion to ferrosilicomanganese using the above waste to replace 40-60% grade III and IV manganese concentrates in the feed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高矿冶工业二次资源利用效率
提出了一种改进的方法来评估回收工业废物的经济可行性和有效性。该方法以盈亏平衡控制机制为基础,但同时规定引入新的评估标准,如条件门槛和矿石替代程度。基于改进的分析,可以更精确地预测回收效率。更精细地确定可回收金属的浓度下限,在该下限下,技术废物可以被指定为二次原料并进行有利可图的处理,这将大大扩大适合回收的二次原料基础。以Chiatura矿业企业回收硅锰生产过程中的含锰粉尘、炉渣水力分离过程中的脱水污泥和电解二氧化锰生产中的滤饼为例。研究表明,在锰含量为-24%的阈值下,通过生产低磷锰渣并利用上述废物转化为硅锰铁来代替饲料中40-60%的III级和IV级锰精矿,可以实现最高的回收效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
61
审稿时长
4-8 weeks
期刊介绍: The Journal serves as a medium for the publication of high quality scientific papers. This requires that the papers that are submitted for publication are properly and fairly refereed and edited. This process will maintain the high quality of the presentation of the paper and ensure that the technical content is in line with the accepted norms of scientific integrity.
期刊最新文献
A study of different grinding aids for low-energy cement clinker production The needle penetration index for estimating the physico-mechanical properties of pyroclastic rocks Energy efficiency in the South African mining sector: A case study at a coal mine in Mpumalanga Optimization of shape factor by the response surface method, and the effect on sphalerite flotation recovery Mechanical activation and physicochemical factors controlling pyrometallurgical, hydrometallurgical, and electrometallurgical processing of titanium ore: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1