Application of Coating Mixture Based on Silica Aerogel to Improve Thermal Protective Performance of Fabrics

IF 1.1 4区 工程技术 Q3 MATERIALS SCIENCE, TEXTILES Autex Research Journal Pub Date : 2022-04-01 DOI:10.2478/aut-2022-0003
P. Miśkiewicz, M. Tokarska, I. Frydrych
{"title":"Application of Coating Mixture Based on Silica Aerogel to Improve Thermal Protective Performance of Fabrics","authors":"P. Miśkiewicz, M. Tokarska, I. Frydrych","doi":"10.2478/aut-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract The main aim of this research is to improve the protective thermal performance of fabrics. Flame-resistant fabrics characterizing comparable thermal properties were chosen, cotton fabric with a flame-retardant finish and Nomex® fabric. To improve thermal parameters the coating mixture, based on silica aerogel, was applied on one side of the sample surface. Parameters such as the thermal conductivity, resistance to contact, and radiant heat were determined based on the standards, which set high expectations for the protective clothing. Analysis of the coated fabrics surfaces was conducted based on confocal microscopy. It was found that the coating mixture caused a decrease in thermal conductivity. All the modified fabrics reached 1st efficiency level of protection against contact and radiant heat. The best sample from the point of view of protection against contact and radiant heat was modified cotton fabric with a flame-retardant finish. The coating mixture contained 45 wt% of silica aerogel. Moreover, better adhesion of the coating mixture to the cotton fabric compared with Nomex® fabric was observed.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autex Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/aut-2022-0003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The main aim of this research is to improve the protective thermal performance of fabrics. Flame-resistant fabrics characterizing comparable thermal properties were chosen, cotton fabric with a flame-retardant finish and Nomex® fabric. To improve thermal parameters the coating mixture, based on silica aerogel, was applied on one side of the sample surface. Parameters such as the thermal conductivity, resistance to contact, and radiant heat were determined based on the standards, which set high expectations for the protective clothing. Analysis of the coated fabrics surfaces was conducted based on confocal microscopy. It was found that the coating mixture caused a decrease in thermal conductivity. All the modified fabrics reached 1st efficiency level of protection against contact and radiant heat. The best sample from the point of view of protection against contact and radiant heat was modified cotton fabric with a flame-retardant finish. The coating mixture contained 45 wt% of silica aerogel. Moreover, better adhesion of the coating mixture to the cotton fabric compared with Nomex® fabric was observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化硅气凝胶复合涂层在提高织物热防护性能中的应用
摘要本研究的主要目的是提高织物的热防护性能。选择了具有类似热性能的阻燃织物,具有阻燃涂层的棉织物和Nomex®织物。为了改善热参数,将基于二氧化硅气凝胶的涂层混合物应用于样品表面的一侧。导热系数、耐接触性和辐射热等参数是根据这些标准确定的,这些标准对防护服提出了很高的期望。基于共聚焦显微镜对涂层织物表面进行分析。发现涂层混合物导致热导率降低。所有改性织物都达到了防接触和防辐射热的第一级效率水平。从防止接触和辐射热的角度来看,最好的样品是具有阻燃整理的改性棉织物。涂层混合物含有45wt%的二氧化硅气凝胶。此外,与Nomex®织物相比,涂层混合物与棉织物的粘附性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Autex Research Journal
Autex Research Journal MATERIALS SCIENCE, TEXTILES-
CiteScore
2.80
自引率
9.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Only few journals deal with textile research at an international and global level complying with the highest standards. Autex Research Journal has the aim to play a leading role in distributing scientific and technological research results on textiles publishing original and innovative papers after peer reviewing, guaranteeing quality and excellence. Everybody dedicated to textiles and textile related materials is invited to submit papers and to contribute to a positive and appealing image of this Journal.
期刊最新文献
Development of an emotional response model for hospital gown design using structural equation modeling Preparation and properties of stainless steel filament/pure cotton woven fabric Network modeling of aesthetic effect for Chinese Yue Opera costume simulation images Study on the relationship between structure and moisturizing performance of seamless knitted fabrics of protein fibers for autumn and winter Antibacterial and yellowing performances of sports underwear fabric with polyamide/silver ion polyurethane filaments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1